A method to dynamically constrain black carbon aerosol sources with online monitored potassium
Abstract The result of Aethalometer model to black carbon (BC) source apportionment is highly determined by the absorption Ångström exponent (α) of aerosols from fossil fuel combustion (α ff) and wood burning (α wb). A method using hourly measured potassium to calculate the α ff and α wb values was...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47ae5ad518294a6aac40c55e68690647 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:47ae5ad518294a6aac40c55e68690647 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:47ae5ad518294a6aac40c55e686906472021-12-02T17:08:37ZA method to dynamically constrain black carbon aerosol sources with online monitored potassium10.1038/s41612-021-00200-y2397-3722https://doaj.org/article/47ae5ad518294a6aac40c55e686906472021-08-01T00:00:00Zhttps://doi.org/10.1038/s41612-021-00200-yhttps://doaj.org/toc/2397-3722Abstract The result of Aethalometer model to black carbon (BC) source apportionment is highly determined by the absorption Ångström exponent (α) of aerosols from fossil fuel combustion (α ff) and wood burning (α wb). A method using hourly measured potassium to calculate the α ff and α wb values was developed in this study. Results showed that the optimal α ff and α wb were 1.09 and 1.79 for the whole dataset. The optimal α values in the diurnal resolution were also calculated with α ff and α wb varied in 1.02 –1.19 and 1.71–1.90, respectively. Using the dynamic α values, the Pearson correlation coefficient between BC and potassium from wood burning substantially improved compared to the results derived from the fixed α values. The method developed in this study is expected to provide more reasonable BC source identification results, which are helpful for air quality, climate, and human health modeling studies.Huang ZhengShaofei KongNan ChenZewei FanYing ZhangLiquan YaoYi ChengShurui ZhengYingying YanDantong LiuDelong ZhaoChao LiuTianliang ZhaoJianping GuoShihua QiNature PortfolioarticleEnvironmental sciencesGE1-350Meteorology. ClimatologyQC851-999ENnpj Climate and Atmospheric Science, Vol 4, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Environmental sciences GE1-350 Meteorology. Climatology QC851-999 |
spellingShingle |
Environmental sciences GE1-350 Meteorology. Climatology QC851-999 Huang Zheng Shaofei Kong Nan Chen Zewei Fan Ying Zhang Liquan Yao Yi Cheng Shurui Zheng Yingying Yan Dantong Liu Delong Zhao Chao Liu Tianliang Zhao Jianping Guo Shihua Qi A method to dynamically constrain black carbon aerosol sources with online monitored potassium |
description |
Abstract The result of Aethalometer model to black carbon (BC) source apportionment is highly determined by the absorption Ångström exponent (α) of aerosols from fossil fuel combustion (α ff) and wood burning (α wb). A method using hourly measured potassium to calculate the α ff and α wb values was developed in this study. Results showed that the optimal α ff and α wb were 1.09 and 1.79 for the whole dataset. The optimal α values in the diurnal resolution were also calculated with α ff and α wb varied in 1.02 –1.19 and 1.71–1.90, respectively. Using the dynamic α values, the Pearson correlation coefficient between BC and potassium from wood burning substantially improved compared to the results derived from the fixed α values. The method developed in this study is expected to provide more reasonable BC source identification results, which are helpful for air quality, climate, and human health modeling studies. |
format |
article |
author |
Huang Zheng Shaofei Kong Nan Chen Zewei Fan Ying Zhang Liquan Yao Yi Cheng Shurui Zheng Yingying Yan Dantong Liu Delong Zhao Chao Liu Tianliang Zhao Jianping Guo Shihua Qi |
author_facet |
Huang Zheng Shaofei Kong Nan Chen Zewei Fan Ying Zhang Liquan Yao Yi Cheng Shurui Zheng Yingying Yan Dantong Liu Delong Zhao Chao Liu Tianliang Zhao Jianping Guo Shihua Qi |
author_sort |
Huang Zheng |
title |
A method to dynamically constrain black carbon aerosol sources with online monitored potassium |
title_short |
A method to dynamically constrain black carbon aerosol sources with online monitored potassium |
title_full |
A method to dynamically constrain black carbon aerosol sources with online monitored potassium |
title_fullStr |
A method to dynamically constrain black carbon aerosol sources with online monitored potassium |
title_full_unstemmed |
A method to dynamically constrain black carbon aerosol sources with online monitored potassium |
title_sort |
method to dynamically constrain black carbon aerosol sources with online monitored potassium |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/47ae5ad518294a6aac40c55e68690647 |
work_keys_str_mv |
AT huangzheng amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT shaofeikong amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT nanchen amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT zeweifan amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT yingzhang amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT liquanyao amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT yicheng amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT shuruizheng amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT yingyingyan amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT dantongliu amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT delongzhao amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT chaoliu amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT tianliangzhao amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT jianpingguo amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT shihuaqi amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT huangzheng methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT shaofeikong methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT nanchen methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT zeweifan methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT yingzhang methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT liquanyao methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT yicheng methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT shuruizheng methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT yingyingyan methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT dantongliu methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT delongzhao methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT chaoliu methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT tianliangzhao methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT jianpingguo methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium AT shihuaqi methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium |
_version_ |
1718381495110860800 |