A method to dynamically constrain black carbon aerosol sources with online monitored potassium

Abstract The result of Aethalometer model to black carbon (BC) source apportionment is highly determined by the absorption Ångström exponent (α) of aerosols from fossil fuel combustion (α ff) and wood burning (α wb). A method using hourly measured potassium to calculate the α ff and α wb values was...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Huang Zheng, Shaofei Kong, Nan Chen, Zewei Fan, Ying Zhang, Liquan Yao, Yi Cheng, Shurui Zheng, Yingying Yan, Dantong Liu, Delong Zhao, Chao Liu, Tianliang Zhao, Jianping Guo, Shihua Qi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/47ae5ad518294a6aac40c55e68690647
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:47ae5ad518294a6aac40c55e68690647
record_format dspace
spelling oai:doaj.org-article:47ae5ad518294a6aac40c55e686906472021-12-02T17:08:37ZA method to dynamically constrain black carbon aerosol sources with online monitored potassium10.1038/s41612-021-00200-y2397-3722https://doaj.org/article/47ae5ad518294a6aac40c55e686906472021-08-01T00:00:00Zhttps://doi.org/10.1038/s41612-021-00200-yhttps://doaj.org/toc/2397-3722Abstract The result of Aethalometer model to black carbon (BC) source apportionment is highly determined by the absorption Ångström exponent (α) of aerosols from fossil fuel combustion (α ff) and wood burning (α wb). A method using hourly measured potassium to calculate the α ff and α wb values was developed in this study. Results showed that the optimal α ff and α wb were 1.09 and 1.79 for the whole dataset. The optimal α values in the diurnal resolution were also calculated with α ff and α wb varied in 1.02 –1.19 and 1.71–1.90, respectively. Using the dynamic α values, the Pearson correlation coefficient between BC and potassium from wood burning substantially improved compared to the results derived from the fixed α values. The method developed in this study is expected to provide more reasonable BC source identification results, which are helpful for air quality, climate, and human health modeling studies.Huang ZhengShaofei KongNan ChenZewei FanYing ZhangLiquan YaoYi ChengShurui ZhengYingying YanDantong LiuDelong ZhaoChao LiuTianliang ZhaoJianping GuoShihua QiNature PortfolioarticleEnvironmental sciencesGE1-350Meteorology. ClimatologyQC851-999ENnpj Climate and Atmospheric Science, Vol 4, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Environmental sciences
GE1-350
Meteorology. Climatology
QC851-999
spellingShingle Environmental sciences
GE1-350
Meteorology. Climatology
QC851-999
Huang Zheng
Shaofei Kong
Nan Chen
Zewei Fan
Ying Zhang
Liquan Yao
Yi Cheng
Shurui Zheng
Yingying Yan
Dantong Liu
Delong Zhao
Chao Liu
Tianliang Zhao
Jianping Guo
Shihua Qi
A method to dynamically constrain black carbon aerosol sources with online monitored potassium
description Abstract The result of Aethalometer model to black carbon (BC) source apportionment is highly determined by the absorption Ångström exponent (α) of aerosols from fossil fuel combustion (α ff) and wood burning (α wb). A method using hourly measured potassium to calculate the α ff and α wb values was developed in this study. Results showed that the optimal α ff and α wb were 1.09 and 1.79 for the whole dataset. The optimal α values in the diurnal resolution were also calculated with α ff and α wb varied in 1.02 –1.19 and 1.71–1.90, respectively. Using the dynamic α values, the Pearson correlation coefficient between BC and potassium from wood burning substantially improved compared to the results derived from the fixed α values. The method developed in this study is expected to provide more reasonable BC source identification results, which are helpful for air quality, climate, and human health modeling studies.
format article
author Huang Zheng
Shaofei Kong
Nan Chen
Zewei Fan
Ying Zhang
Liquan Yao
Yi Cheng
Shurui Zheng
Yingying Yan
Dantong Liu
Delong Zhao
Chao Liu
Tianliang Zhao
Jianping Guo
Shihua Qi
author_facet Huang Zheng
Shaofei Kong
Nan Chen
Zewei Fan
Ying Zhang
Liquan Yao
Yi Cheng
Shurui Zheng
Yingying Yan
Dantong Liu
Delong Zhao
Chao Liu
Tianliang Zhao
Jianping Guo
Shihua Qi
author_sort Huang Zheng
title A method to dynamically constrain black carbon aerosol sources with online monitored potassium
title_short A method to dynamically constrain black carbon aerosol sources with online monitored potassium
title_full A method to dynamically constrain black carbon aerosol sources with online monitored potassium
title_fullStr A method to dynamically constrain black carbon aerosol sources with online monitored potassium
title_full_unstemmed A method to dynamically constrain black carbon aerosol sources with online monitored potassium
title_sort method to dynamically constrain black carbon aerosol sources with online monitored potassium
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/47ae5ad518294a6aac40c55e68690647
work_keys_str_mv AT huangzheng amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT shaofeikong amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT nanchen amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT zeweifan amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT yingzhang amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT liquanyao amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT yicheng amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT shuruizheng amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT yingyingyan amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT dantongliu amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT delongzhao amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT chaoliu amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT tianliangzhao amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT jianpingguo amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT shihuaqi amethodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT huangzheng methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT shaofeikong methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT nanchen methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT zeweifan methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT yingzhang methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT liquanyao methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT yicheng methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT shuruizheng methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT yingyingyan methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT dantongliu methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT delongzhao methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT chaoliu methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT tianliangzhao methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT jianpingguo methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
AT shihuaqi methodtodynamicallyconstrainblackcarbonaerosolsourceswithonlinemonitoredpotassium
_version_ 1718381495110860800