Machine-learned interatomic potentials for alloys and alloy phase diagrams
Abstract We introduce machine-learned potentials for Ag-Pd to describe the energy of alloy configurations over a wide range of compositions. We compare two different approaches. Moment tensor potentials (MTPs) are polynomial-like functions of interatomic distances and angles. The Gaussian approximat...
Enregistré dans:
Auteurs principaux: | Conrad W. Rosenbrock, Konstantin Gubaev, Alexander V. Shapeev, Livia B. Pártay, Noam Bernstein, Gábor Csányi, Gus L. W. Hart |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/47b2072bae1e4a3da976b0281a49afb1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Discovering the building blocks of atomic systems using machine learning: application to grain boundaries
par: Conrad W. Rosenbrock, et autres
Publié: (2017) -
Chemically induced local lattice distortions versus structural phase transformations in compositionally complex alloys
par: Yuji Ikeda, et autres
Publié: (2021) -
Empirical interatomic potentials optimized for phonon properties
par: Andrew Rohskopf, et autres
Publié: (2017) -
Thermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentials
par: Carla Verdi, et autres
Publié: (2021) -
Multi-objective parametrization of interatomic potentials for large deformation pathways and fracture of two-dimensional materials
par: Xu Zhang, et autres
Publié: (2021)