Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study

Background: Ex vivo fluorescent confocal microscopy (FCM) is a novel and effective method for a fast-automatized histological tissue examination. In contrast, conventional diagnostic methods are primarily based on the skills of the histopathologist. In this study, we investigated the potential of co...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Veronika Shavlokhova, Sameena Sandhu, Christa Flechtenmacher, Istvan Koveshazi, Florian Neumeier, Víctor Padrón-Laso, Žan Jonke, Babak Saravi, Michael Vollmer, Andreas Vollmer, Jürgen Hoffmann, Michael Engel, Oliver Ristow, Christian Freudlsperger
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
CNN
SCC
R
Acceso en línea:https://doaj.org/article/47c4d08d37934315a81cbcd5f2d6a157
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:47c4d08d37934315a81cbcd5f2d6a157
record_format dspace
spelling oai:doaj.org-article:47c4d08d37934315a81cbcd5f2d6a1572021-11-25T18:01:47ZDeep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study10.3390/jcm102253262077-0383https://doaj.org/article/47c4d08d37934315a81cbcd5f2d6a1572021-11-01T00:00:00Zhttps://www.mdpi.com/2077-0383/10/22/5326https://doaj.org/toc/2077-0383Background: Ex vivo fluorescent confocal microscopy (FCM) is a novel and effective method for a fast-automatized histological tissue examination. In contrast, conventional diagnostic methods are primarily based on the skills of the histopathologist. In this study, we investigated the potential of convolutional neural networks (CNNs) for automatized classification of oral squamous cell carcinoma via ex vivo FCM imaging for the first time. Material and Methods: Tissue samples from 20 patients were collected, scanned with an ex vivo confocal microscope immediately after resection, and investigated histopathologically. A CNN architecture (MobileNet) was trained and tested for accuracy. Results: The model achieved a sensitivity of 0.47 and specificity of 0.96 in the automated classification of cancerous tissue in our study. Conclusion: In this preliminary work, we trained a CNN model on a limited number of ex vivo FCM images and obtained promising results in the automated classification of cancerous tissue. Further studies using large sample sizes are warranted to introduce this technology into clinics.Veronika ShavlokhovaSameena SandhuChrista FlechtenmacherIstvan KoveshaziFlorian NeumeierVíctor Padrón-LasoŽan JonkeBabak SaraviMichael VollmerAndreas VollmerJürgen HoffmannMichael EngelOliver RistowChristian FreudlspergerMDPI AGarticleconfocal microscopydeep learningCNNOSCCSCCintraoperative microscopyMedicineRENJournal of Clinical Medicine, Vol 10, Iss 5326, p 5326 (2021)
institution DOAJ
collection DOAJ
language EN
topic confocal microscopy
deep learning
CNN
OSCC
SCC
intraoperative microscopy
Medicine
R
spellingShingle confocal microscopy
deep learning
CNN
OSCC
SCC
intraoperative microscopy
Medicine
R
Veronika Shavlokhova
Sameena Sandhu
Christa Flechtenmacher
Istvan Koveshazi
Florian Neumeier
Víctor Padrón-Laso
Žan Jonke
Babak Saravi
Michael Vollmer
Andreas Vollmer
Jürgen Hoffmann
Michael Engel
Oliver Ristow
Christian Freudlsperger
Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
description Background: Ex vivo fluorescent confocal microscopy (FCM) is a novel and effective method for a fast-automatized histological tissue examination. In contrast, conventional diagnostic methods are primarily based on the skills of the histopathologist. In this study, we investigated the potential of convolutional neural networks (CNNs) for automatized classification of oral squamous cell carcinoma via ex vivo FCM imaging for the first time. Material and Methods: Tissue samples from 20 patients were collected, scanned with an ex vivo confocal microscope immediately after resection, and investigated histopathologically. A CNN architecture (MobileNet) was trained and tested for accuracy. Results: The model achieved a sensitivity of 0.47 and specificity of 0.96 in the automated classification of cancerous tissue in our study. Conclusion: In this preliminary work, we trained a CNN model on a limited number of ex vivo FCM images and obtained promising results in the automated classification of cancerous tissue. Further studies using large sample sizes are warranted to introduce this technology into clinics.
format article
author Veronika Shavlokhova
Sameena Sandhu
Christa Flechtenmacher
Istvan Koveshazi
Florian Neumeier
Víctor Padrón-Laso
Žan Jonke
Babak Saravi
Michael Vollmer
Andreas Vollmer
Jürgen Hoffmann
Michael Engel
Oliver Ristow
Christian Freudlsperger
author_facet Veronika Shavlokhova
Sameena Sandhu
Christa Flechtenmacher
Istvan Koveshazi
Florian Neumeier
Víctor Padrón-Laso
Žan Jonke
Babak Saravi
Michael Vollmer
Andreas Vollmer
Jürgen Hoffmann
Michael Engel
Oliver Ristow
Christian Freudlsperger
author_sort Veronika Shavlokhova
title Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
title_short Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
title_full Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
title_fullStr Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
title_full_unstemmed Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
title_sort deep learning on oral squamous cell carcinoma ex vivo fluorescent confocal microscopy data: a feasibility study
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/47c4d08d37934315a81cbcd5f2d6a157
work_keys_str_mv AT veronikashavlokhova deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT sameenasandhu deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT christaflechtenmacher deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT istvankoveshazi deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT florianneumeier deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT victorpadronlaso deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT zanjonke deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT babaksaravi deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT michaelvollmer deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT andreasvollmer deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT jurgenhoffmann deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT michaelengel deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT oliverristow deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
AT christianfreudlsperger deeplearningonoralsquamouscellcarcinomaexvivofluorescentconfocalmicroscopydataafeasibilitystudy
_version_ 1718411676260237312