Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study
Background: Ex vivo fluorescent confocal microscopy (FCM) is a novel and effective method for a fast-automatized histological tissue examination. In contrast, conventional diagnostic methods are primarily based on the skills of the histopathologist. In this study, we investigated the potential of co...
Guardado en:
Autores principales: | Veronika Shavlokhova, Sameena Sandhu, Christa Flechtenmacher, Istvan Koveshazi, Florian Neumeier, Víctor Padrón-Laso, Žan Jonke, Babak Saravi, Michael Vollmer, Andreas Vollmer, Jürgen Hoffmann, Michael Engel, Oliver Ristow, Christian Freudlsperger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47c4d08d37934315a81cbcd5f2d6a157 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine Learning Based Prediction of Squamous Cell Carcinoma in Ex Vivo Confocal Laser Scanning Microscopy
por: Cristel Ruini, et al.
Publicado: (2021) -
Artificial Intelligence to Detect Meibomian Gland Dysfunction From in-vivo Laser Confocal Microscopy
por: Ye-Ye Zhang, et al.
Publicado: (2021) -
The use of reflectance confocal microscopy for monitoring response to therapy of skin malignancies
por: Marina Ulrich, et al.
Publicado: (2012) -
Recognizing the benefits and pitfalls of reflectance confocal microscopy in melanoma diagnosis
por: Alon Scope, et al.
Publicado: (2014) -
Reflectance confocal microscopy of mammary Paget disease
por: Fezal Ozdemir, et al.
Publicado: (2017)