Data-driven optimized control of the COVID-19 epidemics
Abstract Optimizing the impact on the economy of control strategies aiming at containing the spread of COVID-19 is a critical challenge. We use daily new case counts of COVID-19 patients reported by local health administrations from different Metropolitan Statistical Areas (MSAs) within the US to pa...
Guardado en:
Autores principales: | Afroza Shirin, Yen Ting Lin, Francesco Sorrentino |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47c7c885dcf44850a0551e108774d812 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Energy scaling of targeted optimal control of complex networks
por: Isaac Klickstein, et al.
Publicado: (2017) -
Functional data analysis characterizes the shapes of the first COVID-19 epidemic wave in Italy
por: Tobia Boschi, et al.
Publicado: (2021) -
Estimating, monitoring, and forecasting COVID-19 epidemics: a spatiotemporal approach applied to NYC data
por: Vinicius V. L. Albani, et al.
Publicado: (2021) -
COVID-19 epidemic in Libya
por: Amin Bredan, et al.
Publicado: (2021) -
Exploring optimal control of epidemic spread using reinforcement learning
por: Abu Quwsar Ohi, et al.
Publicado: (2020)