Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47df02517dab422f98ad99c5a7c03762 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification. |
---|