Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification

The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification.

Guardado en:
Detalles Bibliográficos
Autores principales: Zhi Geng, Yanfei Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/47df02517dab422f98ad99c5a7c03762
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:47df02517dab422f98ad99c5a7c03762
record_format dspace
spelling oai:doaj.org-article:47df02517dab422f98ad99c5a7c037622021-12-02T18:18:47ZAutomated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification10.1038/s41467-020-17123-62041-1723https://doaj.org/article/47df02517dab422f98ad99c5a7c037622020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17123-6https://doaj.org/toc/2041-1723The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification.Zhi GengYanfei WangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Zhi Geng
Yanfei Wang
Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
description The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification.
format article
author Zhi Geng
Yanfei Wang
author_facet Zhi Geng
Yanfei Wang
author_sort Zhi Geng
title Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
title_short Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
title_full Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
title_fullStr Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
title_full_unstemmed Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
title_sort automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/47df02517dab422f98ad99c5a7c03762
work_keys_str_mv AT zhigeng automateddesignofaconvolutionalneuralnetworkwithmultiscalefiltersforcostefficientseismicdataclassification
AT yanfeiwang automateddesignofaconvolutionalneuralnetworkwithmultiscalefiltersforcostefficientseismicdataclassification
_version_ 1718378211158523904