Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47df02517dab422f98ad99c5a7c03762 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:47df02517dab422f98ad99c5a7c03762 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:47df02517dab422f98ad99c5a7c037622021-12-02T18:18:47ZAutomated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification10.1038/s41467-020-17123-62041-1723https://doaj.org/article/47df02517dab422f98ad99c5a7c037622020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17123-6https://doaj.org/toc/2041-1723The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification.Zhi GengYanfei WangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Zhi Geng Yanfei Wang Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification |
description |
The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification. |
format |
article |
author |
Zhi Geng Yanfei Wang |
author_facet |
Zhi Geng Yanfei Wang |
author_sort |
Zhi Geng |
title |
Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification |
title_short |
Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification |
title_full |
Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification |
title_fullStr |
Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification |
title_full_unstemmed |
Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification |
title_sort |
automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/47df02517dab422f98ad99c5a7c03762 |
work_keys_str_mv |
AT zhigeng automateddesignofaconvolutionalneuralnetworkwithmultiscalefiltersforcostefficientseismicdataclassification AT yanfeiwang automateddesignofaconvolutionalneuralnetworkwithmultiscalefiltersforcostefficientseismicdataclassification |
_version_ |
1718378211158523904 |