Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification.
Guardado en:
Autores principales: | Zhi Geng, Yanfei Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47df02517dab422f98ad99c5a7c03762 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Filter Bank Convolutional Neural Network for SSVEP Classification
por: Dechun Zhao, et al.
Publicado: (2021) -
Automated abnormality classification of chest radiographs using deep convolutional neural networks
por: Yu-Xing Tang, et al.
Publicado: (2020) -
Apple quality identification and classification by image processing based on convolutional neural networks
por: Yanfei Li, et al.
Publicado: (2021) -
Fine-grained classification based on multi-scale pyramid convolution networks.
por: Gaihua Wang, et al.
Publicado: (2021) -
Multi-view convolutional neural networks for automated ocular structure and tumor segmentation in retinoblastoma
por: Victor I. J. Strijbis, et al.
Publicado: (2021)