Deep Neural Networks to Detect Weeds from Crops in Agricultural Environments in Real-Time: A Review
Automation, including machine learning technologies, are becoming increasingly crucial in agriculture to increase productivity. Machine vision is one of the most popular parts of machine learning and has been widely used where advanced automation and control have been required. The trend has shifted...
Guardado en:
Autores principales: | Ildar Rakhmatuiln, Andreas Kamilaris, Christian Andreasen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47f51e3e92cc450795f87e68b1b9d84b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Predictive Power of Regression Models to Determine Grass Weed Infestations in Cereals Based on Drone Imagery—Statistical and Practical Aspects
por: Signe M. Jensen, et al.
Publicado: (2021) -
Assessment of peculiarities of weed formation in oilseed radish agrophytocoenosis using different technological models
por: Tsytsiura,Yaroslav
Publicado: (2020) -
Weed biology and management
Publicado: (2001) -
Integrated weed management practices and sustainable food production among farmers in Kwara State, Nigeria
por: Imoloame Emmanuel Oyamedan, et al.
Publicado: (2021) -
Critical period of weed interference on total polyphenol content in quinoa
por: Merino,Jorge, et al.
Publicado: (2019)