An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning

Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chi-Long Chen, Chi-Chung Chen, Wei-Hsiang Yu, Szu-Hua Chen, Yu-Chan Chang, Tai-I Hsu, Michael Hsiao, Chao-Yuan Yeh, Cheng-Yu Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/47ff16da572b44e18dc48650a6b00d47
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers using slide-level diagnoses with deep learning.