An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning
Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers...
Guardado en:
Autores principales: | Chi-Long Chen, Chi-Chung Chen, Wei-Hsiang Yu, Szu-Hua Chen, Yu-Chan Chang, Tai-I Hsu, Michael Hsiao, Chao-Yuan Yeh, Cheng-Yu Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47ff16da572b44e18dc48650a6b00d47 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient cellular annotation of histopathology slides with real-time AI augmentation
por: James A. Diao, et al.
Publicado: (2021) -
A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images
por: Fahdi Kanavati, et al.
Publicado: (2021) -
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
por: Fahdi Kanavati, et al.
Publicado: (2021) -
Author Correction: A pyramidal deep learning pipeline for kidney whole-slide histology images classification
por: Hisham Abdeltawab, et al.
Publicado: (2021) -
Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs
por: Yu-Cheng Yeh, et al.
Publicado: (2021)