Excited-state fidelity as a signal for the many-body localization transition in a disordered Ising chain
In this work, we use exact matrix diagonalization to explore the many-body localization (MBL) transitions in quantum Ising chains with disordered nearest-neighbour couplings, disordered next-nearest-neighbour couplings and disordered external fields. It is demonstrated that the fidelity can be used...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/47ff9514400941d38287f3bdb29f65cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this work, we use exact matrix diagonalization to explore the many-body localization (MBL) transitions in quantum Ising chains with disordered nearest-neighbour couplings, disordered next-nearest-neighbour couplings and disordered external fields. It is demonstrated that the fidelity can be used to characterize the interaction-driven MBL transition in this closed spin system in a manner that is consistent with previous analytical and numerical results. We compute the fidelity for high-energy many-body eigenstates, namely, the excited-state fidelity. It is demonstrated that disordered nearest-neighbour couplings, disordered next-nearest-neighbour couplings and disordered external fields each have different effects on the MBL transition. Furthermore, we investigate the MBL transition of a quantum Ising chain with both disordered nearest-neighbour couplings and disordered next-nearest-neighbour couplings to see how these two types of disordered couplings drive the occurrence of the MBL transition. |
---|