RnkHEU: A Hybrid Feature Selection Method for Predicting Students’ Performance
Predicting students’ performance is one of the most concerned issues in education data mining (EDM), which has received more and more attentions. Feature selection is the key step to build prediction model of students’ performance, which can improve the accuracy of prediction and help to identify fa...
Guardado en:
Autores principales: | Wen Xiao, Ping Ji, Juan Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/480056522eea49248668e07b7d0f283e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Performance Analysis of Hybrid Deep Learning Models with Attention Mechanism Positioning and Focal Loss for Text Classification
por: Sunil Kumar Prabhakar, et al.
Publicado: (2021) -
The Embedded IoT Time Series Database for Hybrid Solid-State Storage System
por: Tao Cai, et al.
Publicado: (2021) -
Energy Control Strategy for Parallel Hybrid Electric Vehicle Based on Terminal Neural Network
por: Haitao Yan, et al.
Publicado: (2021) -
Value of Magnetic Resonance Imaging Features in Diagnosis and Treatment of Breast Cancer under Intelligent Algorithms
por: Shuang Liu, et al.
Publicado: (2021) -
Echocardiographic Features of Patients with Coronary Heart Disease and Angina Pectoris under Deep Learning Algorithms
por: Xianjing Han, et al.
Publicado: (2021)