Distant metastasis time to event analysis with CNNs in independent head and neck cancer cohorts
Abstract Deep learning models based on medical images play an increasingly important role for cancer outcome prediction. The standard approach involves usage of convolutional neural networks (CNNs) to automatically extract relevant features from the patient’s image and perform a binary classificatio...
Guardado en:
Autores principales: | Elia Lombardo, Christopher Kurz, Sebastian Marschner, Michele Avanzo, Vito Gagliardi, Giuseppe Fanetti, Giovanni Franchin, Joseph Stancanello, Stefanie Corradini, Maximilian Niyazi, Claus Belka, Katia Parodi, Marco Riboldi, Guillaume Landry |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4812d7f380c14586a837d2dab853bfbd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Novel modified patient immobilisation device with an integrated coil support system for MR-guided online adaptive radiotherapy in the management of brain and head-and-neck tumours
por: Dinah Konnerth, et al.
Publicado: (2021) -
Emergence of Lie Symmetries in Functional Architectures Learned by CNNs
por: Federico Bertoni, et al.
Publicado: (2021) -
Detection of Dental Apical Lesions Using CNNs on Periapical Radiograph
por: Chun-Wei Li, et al.
Publicado: (2021) -
Reconfigurable Architecture and Dataflow for Memory Traffic Minimization of CNNs Computation
por: Wei-Kai Cheng, et al.
Publicado: (2021) -
Combining inter-observer variability, range and setup uncertainty in a variance-based sensitivity analysis for proton therapy
por: Jan Hofmaier, et al.
Publicado: (2021)