Cyclopoid copepods as indicators of trophic level in South American reservoirs: A new perspective at species level based on a wide spatial-temporal scale

Aiming to identify efficient indicators for reservoir water quality, the abundance of cyclopoid copepods, 11 limnological variables, and a modified trophic state index (TSI) for tropical/subtropical reservoir systems were studied in 30 different reservoirs in South America. A total of 331 fieldwork...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gilmar Perbiche-Neves, Juliana Pomari, Moacyr Serafim-Júnior, Marcos Gomes Nogueira
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/4812ecbc874944958c375ba92d0ec6a0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4812ecbc874944958c375ba92d0ec6a0
record_format dspace
spelling oai:doaj.org-article:4812ecbc874944958c375ba92d0ec6a02021-12-01T04:52:33ZCyclopoid copepods as indicators of trophic level in South American reservoirs: A new perspective at species level based on a wide spatial-temporal scale1470-160X10.1016/j.ecolind.2021.107744https://doaj.org/article/4812ecbc874944958c375ba92d0ec6a02021-08-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X2100409Xhttps://doaj.org/toc/1470-160XAiming to identify efficient indicators for reservoir water quality, the abundance of cyclopoid copepods, 11 limnological variables, and a modified trophic state index (TSI) for tropical/subtropical reservoir systems were studied in 30 different reservoirs in South America. A total of 331 fieldwork campaigns, originated from six different studies on a wide spatial–temporal scale were analyzed. Samplings included small to large reservoirs (varying between 6 and 2250 km2 area) with oligo, meso and eutrophic conditions, and places with punctual eutrophication from fish cage farms. Spatial scale ordination was relevant for variables and reservoirs, but the temporal scale was also important in all analyses, positioning the same reservoir sampled in different years contrasting correlations in terms of species and variables. Principal component analysis consistently indicated the importance of chlorophyll, nutrients (phosphorus and nitrogen), turbidity, transparency, and depth for proper ordination of reservoirs according to their trophy. Of all the 13 cyclopoid species identified, ten were planktonic and at the end, after conclusive statistical correlation analysis, five species were selected as efficient water quality indicators. Redundancy analysis related different species with different trophic aspects: Acanthocyclops robustus, Microcyclops anceps and Tropocyclops prasinus were positively associated with chlorophyll and inversely associated with water transparency, Thermocyclops decipiens and T. inversus with electrical conductivity, and slightly associated with chlorophyll and total nutrients (phosphorus and nitrogen), and finally Thermocyclops minutus was positively correlated with transparency. Spearman correlations indicated that only T. inversus abundance was correlated with water temperature, but T. decipiens was not correlated with TSI, which is intriguing because this species has been commonly associated with eutrophic waters. Despite tolerate a wide range of trophic conditions, as pointed in RDA, T. decipiens seems to be replaced by other more resistant species when trophic conditions become too high – hypereutrophic environments. Four other selected species were correlated with TSI, and T. minutus was negatively correlated, confirming its association with oligotrophic waters. From all species found, we conclude that A. robustus, M. anceps, T. prasinus, T. decipiens and T. minutus are good indicators of trophic state level in South American reservoirs.Gilmar Perbiche-NevesJuliana PomariMoacyr Serafim-JúniorMarcos Gomes NogueiraElsevierarticleThermocyclops abundance and distributionLarge datasetWater qualityCyanobacteriaEcologyQH540-549.5ENEcological Indicators, Vol 127, Iss , Pp 107744- (2021)
institution DOAJ
collection DOAJ
language EN
topic Thermocyclops abundance and distribution
Large dataset
Water quality
Cyanobacteria
Ecology
QH540-549.5
spellingShingle Thermocyclops abundance and distribution
Large dataset
Water quality
Cyanobacteria
Ecology
QH540-549.5
Gilmar Perbiche-Neves
Juliana Pomari
Moacyr Serafim-Júnior
Marcos Gomes Nogueira
Cyclopoid copepods as indicators of trophic level in South American reservoirs: A new perspective at species level based on a wide spatial-temporal scale
description Aiming to identify efficient indicators for reservoir water quality, the abundance of cyclopoid copepods, 11 limnological variables, and a modified trophic state index (TSI) for tropical/subtropical reservoir systems were studied in 30 different reservoirs in South America. A total of 331 fieldwork campaigns, originated from six different studies on a wide spatial–temporal scale were analyzed. Samplings included small to large reservoirs (varying between 6 and 2250 km2 area) with oligo, meso and eutrophic conditions, and places with punctual eutrophication from fish cage farms. Spatial scale ordination was relevant for variables and reservoirs, but the temporal scale was also important in all analyses, positioning the same reservoir sampled in different years contrasting correlations in terms of species and variables. Principal component analysis consistently indicated the importance of chlorophyll, nutrients (phosphorus and nitrogen), turbidity, transparency, and depth for proper ordination of reservoirs according to their trophy. Of all the 13 cyclopoid species identified, ten were planktonic and at the end, after conclusive statistical correlation analysis, five species were selected as efficient water quality indicators. Redundancy analysis related different species with different trophic aspects: Acanthocyclops robustus, Microcyclops anceps and Tropocyclops prasinus were positively associated with chlorophyll and inversely associated with water transparency, Thermocyclops decipiens and T. inversus with electrical conductivity, and slightly associated with chlorophyll and total nutrients (phosphorus and nitrogen), and finally Thermocyclops minutus was positively correlated with transparency. Spearman correlations indicated that only T. inversus abundance was correlated with water temperature, but T. decipiens was not correlated with TSI, which is intriguing because this species has been commonly associated with eutrophic waters. Despite tolerate a wide range of trophic conditions, as pointed in RDA, T. decipiens seems to be replaced by other more resistant species when trophic conditions become too high – hypereutrophic environments. Four other selected species were correlated with TSI, and T. minutus was negatively correlated, confirming its association with oligotrophic waters. From all species found, we conclude that A. robustus, M. anceps, T. prasinus, T. decipiens and T. minutus are good indicators of trophic state level in South American reservoirs.
format article
author Gilmar Perbiche-Neves
Juliana Pomari
Moacyr Serafim-Júnior
Marcos Gomes Nogueira
author_facet Gilmar Perbiche-Neves
Juliana Pomari
Moacyr Serafim-Júnior
Marcos Gomes Nogueira
author_sort Gilmar Perbiche-Neves
title Cyclopoid copepods as indicators of trophic level in South American reservoirs: A new perspective at species level based on a wide spatial-temporal scale
title_short Cyclopoid copepods as indicators of trophic level in South American reservoirs: A new perspective at species level based on a wide spatial-temporal scale
title_full Cyclopoid copepods as indicators of trophic level in South American reservoirs: A new perspective at species level based on a wide spatial-temporal scale
title_fullStr Cyclopoid copepods as indicators of trophic level in South American reservoirs: A new perspective at species level based on a wide spatial-temporal scale
title_full_unstemmed Cyclopoid copepods as indicators of trophic level in South American reservoirs: A new perspective at species level based on a wide spatial-temporal scale
title_sort cyclopoid copepods as indicators of trophic level in south american reservoirs: a new perspective at species level based on a wide spatial-temporal scale
publisher Elsevier
publishDate 2021
url https://doaj.org/article/4812ecbc874944958c375ba92d0ec6a0
work_keys_str_mv AT gilmarperbicheneves cyclopoidcopepodsasindicatorsoftrophiclevelinsouthamericanreservoirsanewperspectiveatspecieslevelbasedonawidespatialtemporalscale
AT julianapomari cyclopoidcopepodsasindicatorsoftrophiclevelinsouthamericanreservoirsanewperspectiveatspecieslevelbasedonawidespatialtemporalscale
AT moacyrserafimjunior cyclopoidcopepodsasindicatorsoftrophiclevelinsouthamericanreservoirsanewperspectiveatspecieslevelbasedonawidespatialtemporalscale
AT marcosgomesnogueira cyclopoidcopepodsasindicatorsoftrophiclevelinsouthamericanreservoirsanewperspectiveatspecieslevelbasedonawidespatialtemporalscale
_version_ 1718405720682004480