Real-World Data-Driven Machine-Learning-Based Optimal Sensor Selection Approach for Equipment Fault Detection in a Thermal Power Plant
Due to growing electricity demand, developing an efficient fault-detection system in thermal power plants (TPPs) has become a demanding issue. The most probable reason for failure in TPPs is equipment (boiler and turbine) fault. Advance detection of equipment fault can help secure maintenance shutdo...
Guardado en:
Autores principales: | Salman Khalid, Hyunho Hwang, Heung Soo Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4829374d28ff49a1b9b141e7d5c2a182 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Single Fault Diagnosis Method of Sensors in Cascade System Based on Data-Driven
por: Wenbo Na, et al.
Publicado: (2021) -
CFD Simulation of Syngas Combustion in a Two-Pass Oxygen Transport Membrane Reactor for Fire Tube Boiler Application
por: Te Zhao, et al.
Publicado: (2021) -
Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review
por: Tomasz Hardy, et al.
Publicado: (2021) -
Data-Driven Kalman Filtering in Nonlinear Systems with Actuator and Sensor Fault Diagnosis Based on Lyapunov Stability
por: Lingling Fan, et al.
Publicado: (2021) -
Performance Analysis of Database Synchronization on DBMS MySQL and Oracle by Using Event-Driven and Time-Driven Data for Monitoring Weather
por: Nurhanif Nurhanif, et al.
Publicado: (2021)