Hydrodynamic assisted multiparametric particle spectrometry
Abstract The real-time analysis of single analytes in flow is becoming increasingly relevant in cell biology. In this work, we theoretically predict and experimentally demonstrate hydrodynamic focusing with hollow nanomechanical resonators by using an interferometric system which allows the optical...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/482d8b15095b42979831a027e47348ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:482d8b15095b42979831a027e47348ab |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:482d8b15095b42979831a027e47348ab2021-12-02T13:30:34ZHydrodynamic assisted multiparametric particle spectrometry10.1038/s41598-021-82708-02045-2322https://doaj.org/article/482d8b15095b42979831a027e47348ab2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82708-0https://doaj.org/toc/2045-2322Abstract The real-time analysis of single analytes in flow is becoming increasingly relevant in cell biology. In this work, we theoretically predict and experimentally demonstrate hydrodynamic focusing with hollow nanomechanical resonators by using an interferometric system which allows the optical probing of flowing particles and tracking of the fundamental mechanical mode of the resonator. We have characterized the hydrodynamic forces acting on the particles, which will determine their velocity depending on their diameter. By using the parameters simultaneously acquired: frequency shift, velocity and reflectivity, we can unambiguously classify flowing particles in real-time, allowing the measurement of the mass density: 1.35 ± 0.07 g·mL-1 for PMMA and 1.7 ± 0.2 g·mL-1 for silica particles, which perfectly agrees with the nominal values. Once we have tested our technique, MCF-7 human breast adenocarcinoma cells are characterized (1.11 ± 0.08 g·mL-1) with high throughput (300 cells/minute) observing a dependency with their size, opening the door for individual cell cycle studies.Alberto Martín-PérezDaniel RamosMarina L. YuberoSergio García-LópezPriscila M. KosakaJavier TamayoMontserrat CallejaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Alberto Martín-Pérez Daniel Ramos Marina L. Yubero Sergio García-López Priscila M. Kosaka Javier Tamayo Montserrat Calleja Hydrodynamic assisted multiparametric particle spectrometry |
description |
Abstract The real-time analysis of single analytes in flow is becoming increasingly relevant in cell biology. In this work, we theoretically predict and experimentally demonstrate hydrodynamic focusing with hollow nanomechanical resonators by using an interferometric system which allows the optical probing of flowing particles and tracking of the fundamental mechanical mode of the resonator. We have characterized the hydrodynamic forces acting on the particles, which will determine their velocity depending on their diameter. By using the parameters simultaneously acquired: frequency shift, velocity and reflectivity, we can unambiguously classify flowing particles in real-time, allowing the measurement of the mass density: 1.35 ± 0.07 g·mL-1 for PMMA and 1.7 ± 0.2 g·mL-1 for silica particles, which perfectly agrees with the nominal values. Once we have tested our technique, MCF-7 human breast adenocarcinoma cells are characterized (1.11 ± 0.08 g·mL-1) with high throughput (300 cells/minute) observing a dependency with their size, opening the door for individual cell cycle studies. |
format |
article |
author |
Alberto Martín-Pérez Daniel Ramos Marina L. Yubero Sergio García-López Priscila M. Kosaka Javier Tamayo Montserrat Calleja |
author_facet |
Alberto Martín-Pérez Daniel Ramos Marina L. Yubero Sergio García-López Priscila M. Kosaka Javier Tamayo Montserrat Calleja |
author_sort |
Alberto Martín-Pérez |
title |
Hydrodynamic assisted multiparametric particle spectrometry |
title_short |
Hydrodynamic assisted multiparametric particle spectrometry |
title_full |
Hydrodynamic assisted multiparametric particle spectrometry |
title_fullStr |
Hydrodynamic assisted multiparametric particle spectrometry |
title_full_unstemmed |
Hydrodynamic assisted multiparametric particle spectrometry |
title_sort |
hydrodynamic assisted multiparametric particle spectrometry |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/482d8b15095b42979831a027e47348ab |
work_keys_str_mv |
AT albertomartinperez hydrodynamicassistedmultiparametricparticlespectrometry AT danielramos hydrodynamicassistedmultiparametricparticlespectrometry AT marinalyubero hydrodynamicassistedmultiparametricparticlespectrometry AT sergiogarcialopez hydrodynamicassistedmultiparametricparticlespectrometry AT priscilamkosaka hydrodynamicassistedmultiparametricparticlespectrometry AT javiertamayo hydrodynamicassistedmultiparametricparticlespectrometry AT montserratcalleja hydrodynamicassistedmultiparametricparticlespectrometry |
_version_ |
1718392911810265088 |