Hydrodynamic assisted multiparametric particle spectrometry

Abstract The real-time analysis of single analytes in flow is becoming increasingly relevant in cell biology. In this work, we theoretically predict and experimentally demonstrate hydrodynamic focusing with hollow nanomechanical resonators by using an interferometric system which allows the optical...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alberto Martín-Pérez, Daniel Ramos, Marina L. Yubero, Sergio García-López, Priscila M. Kosaka, Javier Tamayo, Montserrat Calleja
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/482d8b15095b42979831a027e47348ab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:482d8b15095b42979831a027e47348ab
record_format dspace
spelling oai:doaj.org-article:482d8b15095b42979831a027e47348ab2021-12-02T13:30:34ZHydrodynamic assisted multiparametric particle spectrometry10.1038/s41598-021-82708-02045-2322https://doaj.org/article/482d8b15095b42979831a027e47348ab2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82708-0https://doaj.org/toc/2045-2322Abstract The real-time analysis of single analytes in flow is becoming increasingly relevant in cell biology. In this work, we theoretically predict and experimentally demonstrate hydrodynamic focusing with hollow nanomechanical resonators by using an interferometric system which allows the optical probing of flowing particles and tracking of the fundamental mechanical mode of the resonator. We have characterized the hydrodynamic forces acting on the particles, which will determine their velocity depending on their diameter. By using the parameters simultaneously acquired: frequency shift, velocity and reflectivity, we can unambiguously classify flowing particles in real-time, allowing the measurement of the mass density: 1.35 ± 0.07 g·mL-1 for PMMA and 1.7 ± 0.2 g·mL-1 for silica particles, which perfectly agrees with the nominal values. Once we have tested our technique, MCF-7 human breast adenocarcinoma cells are characterized (1.11 ± 0.08 g·mL-1) with high throughput (300 cells/minute) observing a dependency with their size, opening the door for individual cell cycle studies.Alberto Martín-PérezDaniel RamosMarina L. YuberoSergio García-LópezPriscila M. KosakaJavier TamayoMontserrat CallejaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Alberto Martín-Pérez
Daniel Ramos
Marina L. Yubero
Sergio García-López
Priscila M. Kosaka
Javier Tamayo
Montserrat Calleja
Hydrodynamic assisted multiparametric particle spectrometry
description Abstract The real-time analysis of single analytes in flow is becoming increasingly relevant in cell biology. In this work, we theoretically predict and experimentally demonstrate hydrodynamic focusing with hollow nanomechanical resonators by using an interferometric system which allows the optical probing of flowing particles and tracking of the fundamental mechanical mode of the resonator. We have characterized the hydrodynamic forces acting on the particles, which will determine their velocity depending on their diameter. By using the parameters simultaneously acquired: frequency shift, velocity and reflectivity, we can unambiguously classify flowing particles in real-time, allowing the measurement of the mass density: 1.35 ± 0.07 g·mL-1 for PMMA and 1.7 ± 0.2 g·mL-1 for silica particles, which perfectly agrees with the nominal values. Once we have tested our technique, MCF-7 human breast adenocarcinoma cells are characterized (1.11 ± 0.08 g·mL-1) with high throughput (300 cells/minute) observing a dependency with their size, opening the door for individual cell cycle studies.
format article
author Alberto Martín-Pérez
Daniel Ramos
Marina L. Yubero
Sergio García-López
Priscila M. Kosaka
Javier Tamayo
Montserrat Calleja
author_facet Alberto Martín-Pérez
Daniel Ramos
Marina L. Yubero
Sergio García-López
Priscila M. Kosaka
Javier Tamayo
Montserrat Calleja
author_sort Alberto Martín-Pérez
title Hydrodynamic assisted multiparametric particle spectrometry
title_short Hydrodynamic assisted multiparametric particle spectrometry
title_full Hydrodynamic assisted multiparametric particle spectrometry
title_fullStr Hydrodynamic assisted multiparametric particle spectrometry
title_full_unstemmed Hydrodynamic assisted multiparametric particle spectrometry
title_sort hydrodynamic assisted multiparametric particle spectrometry
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/482d8b15095b42979831a027e47348ab
work_keys_str_mv AT albertomartinperez hydrodynamicassistedmultiparametricparticlespectrometry
AT danielramos hydrodynamicassistedmultiparametricparticlespectrometry
AT marinalyubero hydrodynamicassistedmultiparametricparticlespectrometry
AT sergiogarcialopez hydrodynamicassistedmultiparametricparticlespectrometry
AT priscilamkosaka hydrodynamicassistedmultiparametricparticlespectrometry
AT javiertamayo hydrodynamicassistedmultiparametricparticlespectrometry
AT montserratcalleja hydrodynamicassistedmultiparametricparticlespectrometry
_version_ 1718392911810265088