Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics

Untargeted metabolomics detects large numbers of metabolites but their annotation remains challenging. Here, the authors develop a metabolic reaction network-based recursive algorithm that expands metabolite annotation by taking advantage of the mass spectral similarity of reaction-paired neighbor m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaotao Shen, Ruohong Wang, Xin Xiong, Yandong Yin, Yuping Cai, Zaijun Ma, Nan Liu, Zheng-Jiang Zhu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/483ceccdfc294c00b995f17e16a13252
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:483ceccdfc294c00b995f17e16a13252
record_format dspace
spelling oai:doaj.org-article:483ceccdfc294c00b995f17e16a132522021-12-02T14:39:37ZMetabolic reaction network-based recursive metabolite annotation for untargeted metabolomics10.1038/s41467-019-09550-x2041-1723https://doaj.org/article/483ceccdfc294c00b995f17e16a132522019-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09550-xhttps://doaj.org/toc/2041-1723Untargeted metabolomics detects large numbers of metabolites but their annotation remains challenging. Here, the authors develop a metabolic reaction network-based recursive algorithm that expands metabolite annotation by taking advantage of the mass spectral similarity of reaction-paired neighbor metabolites.Xiaotao ShenRuohong WangXin XiongYandong YinYuping CaiZaijun MaNan LiuZheng-Jiang ZhuNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-14 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xiaotao Shen
Ruohong Wang
Xin Xiong
Yandong Yin
Yuping Cai
Zaijun Ma
Nan Liu
Zheng-Jiang Zhu
Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
description Untargeted metabolomics detects large numbers of metabolites but their annotation remains challenging. Here, the authors develop a metabolic reaction network-based recursive algorithm that expands metabolite annotation by taking advantage of the mass spectral similarity of reaction-paired neighbor metabolites.
format article
author Xiaotao Shen
Ruohong Wang
Xin Xiong
Yandong Yin
Yuping Cai
Zaijun Ma
Nan Liu
Zheng-Jiang Zhu
author_facet Xiaotao Shen
Ruohong Wang
Xin Xiong
Yandong Yin
Yuping Cai
Zaijun Ma
Nan Liu
Zheng-Jiang Zhu
author_sort Xiaotao Shen
title Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
title_short Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
title_full Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
title_fullStr Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
title_full_unstemmed Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
title_sort metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/483ceccdfc294c00b995f17e16a13252
work_keys_str_mv AT xiaotaoshen metabolicreactionnetworkbasedrecursivemetaboliteannotationforuntargetedmetabolomics
AT ruohongwang metabolicreactionnetworkbasedrecursivemetaboliteannotationforuntargetedmetabolomics
AT xinxiong metabolicreactionnetworkbasedrecursivemetaboliteannotationforuntargetedmetabolomics
AT yandongyin metabolicreactionnetworkbasedrecursivemetaboliteannotationforuntargetedmetabolomics
AT yupingcai metabolicreactionnetworkbasedrecursivemetaboliteannotationforuntargetedmetabolomics
AT zaijunma metabolicreactionnetworkbasedrecursivemetaboliteannotationforuntargetedmetabolomics
AT nanliu metabolicreactionnetworkbasedrecursivemetaboliteannotationforuntargetedmetabolomics
AT zhengjiangzhu metabolicreactionnetworkbasedrecursivemetaboliteannotationforuntargetedmetabolomics
_version_ 1718390529123680256