EN Машинне навчання для властивостей холодоагентів

Міждисциплінарний характер нових цілей, спрямованих на розробку робочих матеріалів для екологічно чистих технологій вимагає більш динамічного використання інформаційних технологій (ІТ) для забезпечення правильних компромісних рішень у конкурентному середовищі. Машинне навчання (ML) — це частина мето...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: С.В. Артеменко, В.О. Мазур
Formato: article
Lenguaje:EN
RU
UK
Publicado: Odessa National Academy of Food Technologies 2021
Materias:
Acceso en línea:https://doaj.org/article/484197d5948e402686833c250ed34261
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Міждисциплінарний характер нових цілей, спрямованих на розробку робочих матеріалів для екологічно чистих технологій вимагає більш динамічного використання інформаційних технологій (ІТ) для забезпечення правильних компромісних рішень у конкурентному середовищі. Машинне навчання (ML) — це частина методологій штучного інтелекту (AI), яка використовує алгоритми, які не є прямим рішенням проблеми, а навчаються за допомогою рішень незліченної кількості подібних проблем. Машинне навчання відкрило новий шлях у дослідженні термодинамічної поведінки нових речовин. Різні обчислювальні інструменти були застосовані для вирішення актуальної проблеми - прогнозування фазової поведінки soft речовин під значними екзогенними впливами. Метою цього дослідження є розробка нової точки зору щодо прогнозування термодинамічних властивостей м'яких речовин за допомогою методології, яка передбачає штучні нейронні мережі (ANN) та глобальну фазову діаграму для забезпечення кореляції між структурою та властивостями. В роботі представлено застосування машинного навчання в інженерній термодинаміці для прогнозування азеотропної поведінки бінарних холодоагентів і визначення коефіцієнта продуктивності (COP) для роботи органічного циклу Ренкіна (ORC). За даними про кипіння та критичні точки. Запропоновано новий підхід до прогнозування утворення азеотропного стану в суміші, який розроблено та представлено. Цей підхід використовує синергію нейронних мереж та методології глобальної фазової діаграми для кореляції азеотропних даних для бінарних сумішей на основі лише критичних властивостей та ацентричного коефіцієнта окремих компонентів у сумішах холодоагентів. Це не вимагає інтенсивних розрахунків. Побудова кореляцій ANN між інформаційними атрибутами робочих рідин та критеріями ефективності циклу Ренкіна звужує область компромісів у просторі конкурентних економічних, екологічних та технологічних критеріїв