The future of sleep health: a data-driven revolution in sleep science and medicine
Abstract In recent years, there has been a significant expansion in the development and use of multi-modal sensors and technologies to monitor physical activity, sleep and circadian rhythms. These developments make accurate sleep monitoring at scale a possibility for the first time. Vast amounts of...
Guardado en:
Autores principales: | Ignacio Perez-Pozuelo, Bing Zhai, Joao Palotti, Raghvendra Mall, Michaël Aupetit, Juan M. Garcia-Gomez, Shahrad Taheri, Yu Guan, Luis Fernandez-Luque |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/48502e85fd554e4883793728caa1dcc7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
U-Sleep: resilient high-frequency sleep staging
por: Mathias Perslev, et al.
Publicado: (2021) -
Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
por: Dae Y. Kang, et al.
Publicado: (2021) -
Deep learning for automated sleep staging using instantaneous heart rate
por: Niranjan Sridhar, et al.
Publicado: (2020) -
Development of an IoT-Based Sleep Apnea Monitoring System for Healthcare Applications
por: Abdur Rab Dhruba, et al.
Publicado: (2021) -
A deep transfer learning approach for wearable sleep stage classification with photoplethysmography
por: Mustafa Radha, et al.
Publicado: (2021)