Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
<p>Cloud and precipitation processes are still a main source of uncertainties in numerical weather prediction and climate change projections. The Priority Programme “Polarimetric Radar Observations meet Atmospheric Modelling (PROM)”, funded by the German Research Foundation (Deutsche Forschung...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4853a1a108c64acaa8e1dd177e431a3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | <p>Cloud and precipitation processes are still a main source of
uncertainties in numerical weather prediction and climate change
projections. The Priority Programme “Polarimetric Radar Observations meet
Atmospheric Modelling (PROM)”, funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG), is guided by the hypothesis that
many uncertainties relate to the lack of observations suitable to challenge
the representation of cloud and precipitation processes in atmospheric
models. Such observations can, however, at present be provided by the
recently installed dual-polarization C-band weather radar network of the
German national meteorological service in synergy with cloud radars and
other instruments at German supersites and similar national networks
increasingly available worldwide. While polarimetric radars potentially
provide valuable in-cloud information on hydrometeor type, quantity,
and microphysical cloud and precipitation processes, and atmospheric models
employ increasingly complex microphysical modules, considerable knowledge
gaps still exist in the interpretation of the observations and in the
optimal microphysics model process formulations. PROM is a coordinated
interdisciplinary effort to increase the use of polarimetric radar
observations in data assimilation, which requires a thorough evaluation and
improvement of parameterizations of moist processes in atmospheric models.
As an overview article of the inter-journal special issue “Fusion of radar
polarimetry and numerical atmospheric modelling towards an improved
understanding of cloud and precipitation processes”, this article outlines
the knowledge achieved in PROM during the past 2 years and gives
perspectives for the next 4 years.</p> |
---|