Design and Evaluation of High-Temperature Well Cementing Slurry System Based on Fractal Theory

The efficient development of oil and gas resources is inseparable from the progress of drilling technology and the safety of the long life cycle of wellbore. At present, exploration and development is expanding to deep and ultra-deep areas. The long life cycle safety of deep and ultra-deep wells is...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guanyi Zheng, Xiaoyang Guo, Zaoyuan Li, Jinfei Sun
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/4863c789e58a4ef8aa27af53656544de
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The efficient development of oil and gas resources is inseparable from the progress of drilling technology and the safety of the long life cycle of wellbore. At present, exploration and development is expanding to deep and ultra-deep areas. The long life cycle safety of deep and ultra-deep wells is mainly realized by the sealing performance of cement slurry. Additionally, the accumulation degree of cement slurry particles is closely related to sealing performance. Based on fractal theory, an accumulation model of continuous distribution of additive material particles was designed, which can determine the range of fractal dimension necessary to realize the tight stacking and guide the proportion of solid admixture. The formulation of high temperature-resistant cement slurry was prepared by designing the ratio of solid admixture and optimizing the high temperature-resistant liquid admixture. The evaluation of engineering and temperature resistance of the cement slurry proves the rationality of the accumulation model, which can be applied to the design of a high temperature cementing slurry system in deep and ultra-deep wells.