Band structure engineering of NiS2 monolayer by transition metal doping
Abstract By using density functional theory calculations, we have studied the effects of V-, Cr-, Mn-, Fe- and Co-doped on the electronic and magnetic properties of the 1T-NiS2 monolayer. The results show that pure 1T-NiS2 monolayer is a non-magnetic semiconductor. Whereas depending on the species o...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/48676ede7b2e4c14a17d6474019b4951 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:48676ede7b2e4c14a17d6474019b4951 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:48676ede7b2e4c14a17d6474019b49512021-12-02T13:34:31ZBand structure engineering of NiS2 monolayer by transition metal doping10.1038/s41598-021-84967-32045-2322https://doaj.org/article/48676ede7b2e4c14a17d6474019b49512021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84967-3https://doaj.org/toc/2045-2322Abstract By using density functional theory calculations, we have studied the effects of V-, Cr-, Mn-, Fe- and Co-doped on the electronic and magnetic properties of the 1T-NiS2 monolayer. The results show that pure 1T-NiS2 monolayer is a non-magnetic semiconductor. Whereas depending on the species of transition metal atom, the substituted 1T-NiS2 monolayer can become a magnetic semiconductor (Mn-doped), half-metal (V- and Fe-doped) and magnetic (Cr-doped) or non-magnetic (Co-doped) metal. The results indicate that the magnetism can be controlled by the doping of 3d transition metal atoms on the monolayer. In this paper, the engineering of the electric and magnetic properties of 1T-NiS2 monolayer is revealed. It is clear that it could have a promising application in new nanoelectronic and spintronic devices.H. KhalatbariS. Izadi VishkayiM. OskouianH. Rahimpour SoleimaniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q H. Khalatbari S. Izadi Vishkayi M. Oskouian H. Rahimpour Soleimani Band structure engineering of NiS2 monolayer by transition metal doping |
description |
Abstract By using density functional theory calculations, we have studied the effects of V-, Cr-, Mn-, Fe- and Co-doped on the electronic and magnetic properties of the 1T-NiS2 monolayer. The results show that pure 1T-NiS2 monolayer is a non-magnetic semiconductor. Whereas depending on the species of transition metal atom, the substituted 1T-NiS2 monolayer can become a magnetic semiconductor (Mn-doped), half-metal (V- and Fe-doped) and magnetic (Cr-doped) or non-magnetic (Co-doped) metal. The results indicate that the magnetism can be controlled by the doping of 3d transition metal atoms on the monolayer. In this paper, the engineering of the electric and magnetic properties of 1T-NiS2 monolayer is revealed. It is clear that it could have a promising application in new nanoelectronic and spintronic devices. |
format |
article |
author |
H. Khalatbari S. Izadi Vishkayi M. Oskouian H. Rahimpour Soleimani |
author_facet |
H. Khalatbari S. Izadi Vishkayi M. Oskouian H. Rahimpour Soleimani |
author_sort |
H. Khalatbari |
title |
Band structure engineering of NiS2 monolayer by transition metal doping |
title_short |
Band structure engineering of NiS2 monolayer by transition metal doping |
title_full |
Band structure engineering of NiS2 monolayer by transition metal doping |
title_fullStr |
Band structure engineering of NiS2 monolayer by transition metal doping |
title_full_unstemmed |
Band structure engineering of NiS2 monolayer by transition metal doping |
title_sort |
band structure engineering of nis2 monolayer by transition metal doping |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/48676ede7b2e4c14a17d6474019b4951 |
work_keys_str_mv |
AT hkhalatbari bandstructureengineeringofnis2monolayerbytransitionmetaldoping AT sizadivishkayi bandstructureengineeringofnis2monolayerbytransitionmetaldoping AT moskouian bandstructureengineeringofnis2monolayerbytransitionmetaldoping AT hrahimpoursoleimani bandstructureengineeringofnis2monolayerbytransitionmetaldoping |
_version_ |
1718392791697981440 |