A new deep learning algorithm of 12-lead electrocardiogram for identifying atrial fibrillation during sinus rhythm
Abstract Atrial fibrillation (AF) is the most prevalent arrhythmia and is associated with increased morbidity and mortality. Its early detection is challenging because of the low detection yield of conventional methods. We aimed to develop a deep learning-based algorithm to identify AF during normal...
Enregistré dans:
Auteurs principaux: | Yong-Soo Baek, Sang-Chul Lee, Wonik Choi, Dae-Hyeok Kim |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/48682c14524e4e05a6ad4f592d0e3021 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Atrial fibrillation detection in outpatient electrocardiogram monitoring: An algorithmic crowdsourcing approach.
par: Ali Bahrami Rad, et autres
Publié: (2021) -
Atrial fibrillation detection in outpatient electrocardiogram monitoring: An algorithmic crowdsourcing approach
par: Ali Bahrami Rad, et autres
Publié: (2021) -
Improvement in Atrial Fibrillation-Related Symptoms After Cardioversion: Role of NYHA Functional Class and Maintenance of Sinus Rhythm
par: Ferre-Vallverdu M, et autres
Publié: (2021) -
Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling
par: Laura Iop, et autres
Publié: (2021) -
Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization
par: Pietro Melzi, et autres
Publié: (2021)