New 2-aryl-7,8-dimethoxy-3,4-dihydroisoquinolin-2-ium salts as potential antifungal agents: synthesis, bioactivity and structure-activity relationships

Abstract The title compounds can be considered as simple analogues of quaternary benzo[c]phenanthridine alkaloids (QBAs). In order to develop potent QBA-like antifungal agents, as our continuing study, a series of new title compounds were synthesized and evaluated for bioactivity against five plant...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lifei Zhu, Bohang Zhou, Bingyu Zhang, Mingxuan Xu, Huiling Geng, Le Zhou
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4887c97e45974bf0b94608093f6d37c6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The title compounds can be considered as simple analogues of quaternary benzo[c]phenanthridine alkaloids (QBAs). In order to develop potent QBA-like antifungal agents, as our continuing study, a series of new title compounds were synthesized and evaluated for bioactivity against five plant pathogenic fungi by the mycelium growth rate method in this study. The SAR were also derived. The majority of the compounds showed good to excellent inhibition activity with average EC50 values of 7.87–20.0 μM for the fungi, superior to sanguinarine and cherythrine (two QBAs) and the commercial fungicide azoxystrobin. Part of the compounds were more active than commercial fungicides thiabendazole or carbendazim against F. solani, F. graminearum and C. gloeosporioides. Six compounds with average EC50 of 3.5–5.1 μg/mL possessed very great potential for development of new antifungal agents. SAR found that substitution patterns of the two aryl-rings significantly affect the activity. There exists a complex interaction effect between substituents of the two aryl-rings on the activity. Generally, the presence of electron-withdrawing groups on the C-ring can significantly increase the activity. These findings will be of great importance for the design of more potent antifungal isoquinoline agents.