Fine-grained data reveal segregated mobility networks and opportunities for local containment of COVID-19
Abstract Deriving effective mobility control measures is critical for the control of COVID-19 spreading. In response to the COVID-19 pandemic, many countries and regions implemented travel restrictions and quarantines to reduce human mobility and thus reduce virus transmission. But since human mobil...
Guardado en:
Autores principales: | Chao Fan, Ronald Lee, Yang Yang, Ali Mostafavi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/488e897a789a4fec8f165ab3bc4616d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Learning grain boundary segregation energy spectra in polycrystals
por: Malik Wagih, et al.
Publicado: (2020) -
FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks.
por: Andrea Tangherloni, et al.
Publicado: (2021) -
Fine-grained classification based on multi-scale pyramid convolution networks.
por: Gaihua Wang, et al.
Publicado: (2021) -
Genetic divergence of parents and F2 segregation in grain Amaranths
por: Milan Pandey,Ram
Publicado: (2009) -
Atomically ordered solute segregation behaviour in an oxide grain boundary
por: Bin Feng, et al.
Publicado: (2016)