Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images

We propose a new framework, PlasmodiumVF-Net, to analyze thick smear microscopy images for a malaria diagnosis on both image and patient-level. Our framework detects whether a patient is infected, and in case of a malarial infection, reports whether the patient is infected by <i>Plasmodium fal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yasmin M. Kassim, Feng Yang, Hang Yu, Richard J. Maude, Stefan Jaeger
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/488fcf6f428349ea9297ed43bea03374
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:488fcf6f428349ea9297ed43bea03374
record_format dspace
spelling oai:doaj.org-article:488fcf6f428349ea9297ed43bea033742021-11-25T17:20:34ZDiagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images10.3390/diagnostics111119942075-4418https://doaj.org/article/488fcf6f428349ea9297ed43bea033742021-10-01T00:00:00Zhttps://www.mdpi.com/2075-4418/11/11/1994https://doaj.org/toc/2075-4418We propose a new framework, PlasmodiumVF-Net, to analyze thick smear microscopy images for a malaria diagnosis on both image and patient-level. Our framework detects whether a patient is infected, and in case of a malarial infection, reports whether the patient is infected by <i>Plasmodium falciparum</i> or <i>Plasmodium vivax</i>. PlasmodiumVF-Net first detects candidates for Plasmodium parasites using a Mask Regional-Convolutional Neural Network (Mask R-CNN), filters out false positives using a ResNet50 classifier, and then follows a new approach to recognize parasite species based on a score obtained from the number of detected patches and their aggregated probabilities for all of the patient images. Reporting a patient-level decision is highly challenging, and therefore reported less often in the literature, due to the small size of detected parasites, the similarity to staining artifacts, the similarity of species in different development stages, and illumination or color variations on patient-level. We use a manually annotated dataset consisting of 350 patients, with about 6000 images, which we make publicly available together with this manuscript. Our framework achieves an overall accuracy above 90% on image and patient-level.Yasmin M. KassimFeng YangHang YuRichard J. MaudeStefan JaegerMDPI AGarticlemalariacomputer-aided diagnosisbiomedical image analysisdeep learningResNet50Mask R-CNNMedicine (General)R5-920ENDiagnostics, Vol 11, Iss 1994, p 1994 (2021)
institution DOAJ
collection DOAJ
language EN
topic malaria
computer-aided diagnosis
biomedical image analysis
deep learning
ResNet50
Mask R-CNN
Medicine (General)
R5-920
spellingShingle malaria
computer-aided diagnosis
biomedical image analysis
deep learning
ResNet50
Mask R-CNN
Medicine (General)
R5-920
Yasmin M. Kassim
Feng Yang
Hang Yu
Richard J. Maude
Stefan Jaeger
Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
description We propose a new framework, PlasmodiumVF-Net, to analyze thick smear microscopy images for a malaria diagnosis on both image and patient-level. Our framework detects whether a patient is infected, and in case of a malarial infection, reports whether the patient is infected by <i>Plasmodium falciparum</i> or <i>Plasmodium vivax</i>. PlasmodiumVF-Net first detects candidates for Plasmodium parasites using a Mask Regional-Convolutional Neural Network (Mask R-CNN), filters out false positives using a ResNet50 classifier, and then follows a new approach to recognize parasite species based on a score obtained from the number of detected patches and their aggregated probabilities for all of the patient images. Reporting a patient-level decision is highly challenging, and therefore reported less often in the literature, due to the small size of detected parasites, the similarity to staining artifacts, the similarity of species in different development stages, and illumination or color variations on patient-level. We use a manually annotated dataset consisting of 350 patients, with about 6000 images, which we make publicly available together with this manuscript. Our framework achieves an overall accuracy above 90% on image and patient-level.
format article
author Yasmin M. Kassim
Feng Yang
Hang Yu
Richard J. Maude
Stefan Jaeger
author_facet Yasmin M. Kassim
Feng Yang
Hang Yu
Richard J. Maude
Stefan Jaeger
author_sort Yasmin M. Kassim
title Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
title_short Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
title_full Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
title_fullStr Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
title_full_unstemmed Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
title_sort diagnosing malaria patients with <i>plasmodium falciparum</i> and <i>vivax</i> using deep learning for thick smear images
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/488fcf6f428349ea9297ed43bea03374
work_keys_str_mv AT yasminmkassim diagnosingmalariapatientswithiplasmodiumfalciparumiandivivaxiusingdeeplearningforthicksmearimages
AT fengyang diagnosingmalariapatientswithiplasmodiumfalciparumiandivivaxiusingdeeplearningforthicksmearimages
AT hangyu diagnosingmalariapatientswithiplasmodiumfalciparumiandivivaxiusingdeeplearningforthicksmearimages
AT richardjmaude diagnosingmalariapatientswithiplasmodiumfalciparumiandivivaxiusingdeeplearningforthicksmearimages
AT stefanjaeger diagnosingmalariapatientswithiplasmodiumfalciparumiandivivaxiusingdeeplearningforthicksmearimages
_version_ 1718412468369227776