Diagnosing Malaria Patients with <i>Plasmodium falciparum</i> and <i>vivax</i> Using Deep Learning for Thick Smear Images
We propose a new framework, PlasmodiumVF-Net, to analyze thick smear microscopy images for a malaria diagnosis on both image and patient-level. Our framework detects whether a patient is infected, and in case of a malarial infection, reports whether the patient is infected by <i>Plasmodium fal...
Guardado en:
Autores principales: | Yasmin M. Kassim, Feng Yang, Hang Yu, Richard J. Maude, Stefan Jaeger |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/488fcf6f428349ea9297ed43bea03374 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Interferogram Selection for SBAS-InSAR Based on Deep Convolutional Neural Networks
por: Yufang He, et al.
Publicado: (2021) -
Multi-Label Classification for Power Quality Disturbances by Integrated Deep Learning
por: Xiangui Xiao, et al.
Publicado: (2021) -
Bangladeshi Native Vehicle Classification Based on Transfer Learning with Deep Convolutional Neural Network
por: Md Mahibul Hasan, et al.
Publicado: (2021) -
Unmanned Aerial System-Based Weed Mapping in Sod Production Using a Convolutional Neural Network
por: Jing Zhang, et al.
Publicado: (2021) -
A Deep Neural Network Based on ResNet for Predicting Solutions of Poisson–Boltzmann Equation
por: In Kwon, et al.
Publicado: (2021)