Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line
Wen Wang,1–3,* Yang Li,1–3,* Xiaomei Liu,3 Minghua Jin,3 Haiying Du,3 Ying Liu,3 Peili Huang,1,2 Xianqing Zhou,1,2 Lan Yuan,4 Zhiwei Sun1–3 1School of Public Health, Capital Medical University, Beijing, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medica...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/489098f478d04b5fa371155ccc4b7394 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:489098f478d04b5fa371155ccc4b7394 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:489098f478d04b5fa371155ccc4b73942021-12-02T01:32:57ZMultinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line1176-91141178-2013https://doaj.org/article/489098f478d04b5fa371155ccc4b73942013-09-01T00:00:00Zhttp://www.dovepress.com/multinucleation-and-cell-dysfunction-induced-by-amorphous-silica-nanop-a14425https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Wen Wang,1–3,* Yang Li,1–3,* Xiaomei Liu,3 Minghua Jin,3 Haiying Du,3 Ying Liu,3 Peili Huang,1,2 Xianqing Zhou,1,2 Lan Yuan,4 Zhiwei Sun1–3 1School of Public Health, Capital Medical University, Beijing, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3School of Public Health, Jilin University, Changchun, Jilin, 4Medical and Healthy Analysis Centre, Peking University, Beijing, People's Republic of China *These authors contributed equally to this work Abstract: Silica nanoparticles (SNPs) are one of the most important nanomaterials, and have been widely used in a variety of fields. Therefore, their effects on human health and the environment have been addressed in a number of studies. In this work, the effects of amorphous SNPs were investigated with regard to multinucleation in L-02 human hepatic cells. Our results show that L-02 cells had an abnormally high incidence of multinucleation upon exposure to silica, that increased in a dose-dependent manner. Propidium iodide staining showed that multinucleated cells were arrested in G2/M phase of the cell cycle. Increased multinucleation in L-02 cells was associated with increased generation of cellular reactive oxygen species and mitochondrial damage on flow cytometry and confocal microscopy, which might have led to failure of cytokinesis in these cells. Further, SNPs inhibited cell growth and induced apoptosis in exposed cells. Taken together, our findings demonstrate that multinucleation in L-02 human hepatic cells might be a failure to undergo cytokinesis or cell fusion in response to SNPs, and the increase in cellular reactive oxygen species could be responsible for the apoptosis seen in both mononuclear cells and multinucleated cells. Keywords: silica nanoparticles, human hepatic cell L-02, multinucleation, cell cycle, cell dysfunction, apoptosisWang WLi YLiu XJin MDu HLiu YHuang PZhou XYuan LSun ZDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss default, Pp 3533-3541 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Wang W Li Y Liu X Jin M Du H Liu Y Huang P Zhou X Yuan L Sun Z Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line |
description |
Wen Wang,1–3,* Yang Li,1–3,* Xiaomei Liu,3 Minghua Jin,3 Haiying Du,3 Ying Liu,3 Peili Huang,1,2 Xianqing Zhou,1,2 Lan Yuan,4 Zhiwei Sun1–3 1School of Public Health, Capital Medical University, Beijing, 2Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 3School of Public Health, Jilin University, Changchun, Jilin, 4Medical and Healthy Analysis Centre, Peking University, Beijing, People's Republic of China *These authors contributed equally to this work Abstract: Silica nanoparticles (SNPs) are one of the most important nanomaterials, and have been widely used in a variety of fields. Therefore, their effects on human health and the environment have been addressed in a number of studies. In this work, the effects of amorphous SNPs were investigated with regard to multinucleation in L-02 human hepatic cells. Our results show that L-02 cells had an abnormally high incidence of multinucleation upon exposure to silica, that increased in a dose-dependent manner. Propidium iodide staining showed that multinucleated cells were arrested in G2/M phase of the cell cycle. Increased multinucleation in L-02 cells was associated with increased generation of cellular reactive oxygen species and mitochondrial damage on flow cytometry and confocal microscopy, which might have led to failure of cytokinesis in these cells. Further, SNPs inhibited cell growth and induced apoptosis in exposed cells. Taken together, our findings demonstrate that multinucleation in L-02 human hepatic cells might be a failure to undergo cytokinesis or cell fusion in response to SNPs, and the increase in cellular reactive oxygen species could be responsible for the apoptosis seen in both mononuclear cells and multinucleated cells. Keywords: silica nanoparticles, human hepatic cell L-02, multinucleation, cell cycle, cell dysfunction, apoptosis |
format |
article |
author |
Wang W Li Y Liu X Jin M Du H Liu Y Huang P Zhou X Yuan L Sun Z |
author_facet |
Wang W Li Y Liu X Jin M Du H Liu Y Huang P Zhou X Yuan L Sun Z |
author_sort |
Wang W |
title |
Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line |
title_short |
Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line |
title_full |
Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line |
title_fullStr |
Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line |
title_full_unstemmed |
Multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an L-02 human hepatic cell line |
title_sort |
multinucleation and cell dysfunction induced by amorphous silica nanoparticles in an l-02 human hepatic cell line |
publisher |
Dove Medical Press |
publishDate |
2013 |
url |
https://doaj.org/article/489098f478d04b5fa371155ccc4b7394 |
work_keys_str_mv |
AT wangw multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline AT liy multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline AT liux multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline AT jinm multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline AT duh multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline AT liuy multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline AT huangp multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline AT zhoux multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline AT yuanl multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline AT sunz multinucleationandcelldysfunctioninducedbyamorphoussilicananoparticlesinanl02humanhepaticcellline |
_version_ |
1718403009847754752 |