Analysis of the Electroconsolidation Process of Fine-Dispersed Structures Out of Hot Pressed Al<sub>2</sub>O<sub>3</sub>–WC Nanopowders
Fabrication of alumina–tungsten carbide nanocomposite was investigated. Characteristics of the densification and sintering were analyzed considering both the nano-size particle starting powders and the processing stages. Different heating rates were generated during densification and consolidation w...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/489221f1cfba4f45b79d4529d0ffb53f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:489221f1cfba4f45b79d4529d0ffb53f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:489221f1cfba4f45b79d4529d0ffb53f2021-11-11T18:04:40ZAnalysis of the Electroconsolidation Process of Fine-Dispersed Structures Out of Hot Pressed Al<sub>2</sub>O<sub>3</sub>–WC Nanopowders10.3390/ma142165031996-1944https://doaj.org/article/489221f1cfba4f45b79d4529d0ffb53f2021-10-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/21/6503https://doaj.org/toc/1996-1944Fabrication of alumina–tungsten carbide nanocomposite was investigated. Characteristics of the densification and sintering were analyzed considering both the nano-size particle starting powders and the processing stages. Different heating rates were generated during densification and consolidation with a maximal load was applied only after a temperature of 1000 °C was reached. Due to the varying dominance of different physical processes affecting the grains, appropriate heating rates and pressure at different stages ensured that a structure with submicron grains was obtained. With directly applied alternating current, it was found that the proportion Al<sub>2</sub>O<sub>3</sub> (50 wt.%)–WC provided the highest fracture toughness, and a sintering temperature above 1600 °C was found to be disadvantageous. High heating rates and a short sintering time enabled the process to be completed in 12 min, saving energy and time.Edwin GevorkyanMirosław RuckiZbigniew KrzysiakVolodymyr ChishkalaWojciech ZurowskiWojciech KucharczykVoskan BarsamyanVolodymyr NerubatskyiTomasz MazurDmitrij MorozowZbigniew SiemiątkowskiJacek CabanMDPI AGarticleelectroconsolidationnanopowdertungsten carbidefast sinteringgrain growthdiffusionTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6503, p 6503 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
electroconsolidation nanopowder tungsten carbide fast sintering grain growth diffusion Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
electroconsolidation nanopowder tungsten carbide fast sintering grain growth diffusion Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Edwin Gevorkyan Mirosław Rucki Zbigniew Krzysiak Volodymyr Chishkala Wojciech Zurowski Wojciech Kucharczyk Voskan Barsamyan Volodymyr Nerubatskyi Tomasz Mazur Dmitrij Morozow Zbigniew Siemiątkowski Jacek Caban Analysis of the Electroconsolidation Process of Fine-Dispersed Structures Out of Hot Pressed Al<sub>2</sub>O<sub>3</sub>–WC Nanopowders |
description |
Fabrication of alumina–tungsten carbide nanocomposite was investigated. Characteristics of the densification and sintering were analyzed considering both the nano-size particle starting powders and the processing stages. Different heating rates were generated during densification and consolidation with a maximal load was applied only after a temperature of 1000 °C was reached. Due to the varying dominance of different physical processes affecting the grains, appropriate heating rates and pressure at different stages ensured that a structure with submicron grains was obtained. With directly applied alternating current, it was found that the proportion Al<sub>2</sub>O<sub>3</sub> (50 wt.%)–WC provided the highest fracture toughness, and a sintering temperature above 1600 °C was found to be disadvantageous. High heating rates and a short sintering time enabled the process to be completed in 12 min, saving energy and time. |
format |
article |
author |
Edwin Gevorkyan Mirosław Rucki Zbigniew Krzysiak Volodymyr Chishkala Wojciech Zurowski Wojciech Kucharczyk Voskan Barsamyan Volodymyr Nerubatskyi Tomasz Mazur Dmitrij Morozow Zbigniew Siemiątkowski Jacek Caban |
author_facet |
Edwin Gevorkyan Mirosław Rucki Zbigniew Krzysiak Volodymyr Chishkala Wojciech Zurowski Wojciech Kucharczyk Voskan Barsamyan Volodymyr Nerubatskyi Tomasz Mazur Dmitrij Morozow Zbigniew Siemiątkowski Jacek Caban |
author_sort |
Edwin Gevorkyan |
title |
Analysis of the Electroconsolidation Process of Fine-Dispersed Structures Out of Hot Pressed Al<sub>2</sub>O<sub>3</sub>–WC Nanopowders |
title_short |
Analysis of the Electroconsolidation Process of Fine-Dispersed Structures Out of Hot Pressed Al<sub>2</sub>O<sub>3</sub>–WC Nanopowders |
title_full |
Analysis of the Electroconsolidation Process of Fine-Dispersed Structures Out of Hot Pressed Al<sub>2</sub>O<sub>3</sub>–WC Nanopowders |
title_fullStr |
Analysis of the Electroconsolidation Process of Fine-Dispersed Structures Out of Hot Pressed Al<sub>2</sub>O<sub>3</sub>–WC Nanopowders |
title_full_unstemmed |
Analysis of the Electroconsolidation Process of Fine-Dispersed Structures Out of Hot Pressed Al<sub>2</sub>O<sub>3</sub>–WC Nanopowders |
title_sort |
analysis of the electroconsolidation process of fine-dispersed structures out of hot pressed al<sub>2</sub>o<sub>3</sub>–wc nanopowders |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/489221f1cfba4f45b79d4529d0ffb53f |
work_keys_str_mv |
AT edwingevorkyan analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT mirosławrucki analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT zbigniewkrzysiak analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT volodymyrchishkala analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT wojciechzurowski analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT wojciechkucharczyk analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT voskanbarsamyan analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT volodymyrnerubatskyi analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT tomaszmazur analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT dmitrijmorozow analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT zbigniewsiemiatkowski analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders AT jacekcaban analysisoftheelectroconsolidationprocessoffinedispersedstructuresoutofhotpressedalsub2subosub3subwcnanopowders |
_version_ |
1718431939216539648 |