Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images

Abstract Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Eric W. Prince, Ros Whelan, David M. Mirsky, Nicholas Stence, Susan Staulcup, Paul Klimo, Richard C. E. Anderson, Toba N. Niazi, Gerald Grant, Mark Souweidane, James M. Johnston, Eric M. Jackson, David D. Limbrick, Amy Smith, Annie Drapeau, Joshua J. Chern, Lindsay Kilburn, Kevin Ginn, Robert Naftel, Roy Dudley, Elizabeth Tyler-Kabara, George Jallo, Michael H. Handler, Kenneth Jones, Andrew M. Donson, Nicholas K. Foreman, Todd C. Hankinson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/48a196a679684d488c084efeeb434cda
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:48a196a679684d488c084efeeb434cda
record_format dspace
spelling oai:doaj.org-article:48a196a679684d488c084efeeb434cda2021-12-02T18:36:14ZRobust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images10.1038/s41598-020-73278-82045-2322https://doaj.org/article/48a196a679684d488c084efeeb434cda2020-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-73278-8https://doaj.org/toc/2045-2322Abstract Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potentially sparing patients from the risks associated with surgical intervention on the brain. Such an approach will depend upon highly accurate models built using the limited datasets that are available. Herein, we present a novel genetic algorithm (GA) that identifies optimal architecture parameters using feature embeddings from state-of-the-art image classification networks to identify the pediatric brain tumor, adamantinomatous craniopharyngioma (ACP). We optimized classification models for preoperative Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and combined CT and MRI datasets with demonstrated test accuracies of 85.3%, 83.3%, and 87.8%, respectively. Notably, our GA improved baseline model performance by up to 38%. This work advances DL and its applications within healthcare by identifying optimized networks in small-scale data contexts. The proposed system is easily implementable and scalable for non-invasive computer-aided diagnosis, even for uncommon diseases.Eric W. PrinceRos WhelanDavid M. MirskyNicholas StenceSusan StaulcupPaul KlimoRichard C. E. AndersonToba N. NiaziGerald GrantMark SouweidaneJames M. JohnstonEric M. JacksonDavid D. LimbrickAmy SmithAnnie DrapeauJoshua J. ChernLindsay KilburnKevin GinnRobert NaftelRoy DudleyElizabeth Tyler-KabaraGeorge JalloMichael H. HandlerKenneth JonesAndrew M. DonsonNicholas K. ForemanTodd C. HankinsonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Eric W. Prince
Ros Whelan
David M. Mirsky
Nicholas Stence
Susan Staulcup
Paul Klimo
Richard C. E. Anderson
Toba N. Niazi
Gerald Grant
Mark Souweidane
James M. Johnston
Eric M. Jackson
David D. Limbrick
Amy Smith
Annie Drapeau
Joshua J. Chern
Lindsay Kilburn
Kevin Ginn
Robert Naftel
Roy Dudley
Elizabeth Tyler-Kabara
George Jallo
Michael H. Handler
Kenneth Jones
Andrew M. Donson
Nicholas K. Foreman
Todd C. Hankinson
Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
description Abstract Deep learning (DL) is a widely applied mathematical modeling technique. Classically, DL models utilize large volumes of training data, which are not available in many healthcare contexts. For patients with brain tumors, non-invasive diagnosis would represent a substantial clinical advance, potentially sparing patients from the risks associated with surgical intervention on the brain. Such an approach will depend upon highly accurate models built using the limited datasets that are available. Herein, we present a novel genetic algorithm (GA) that identifies optimal architecture parameters using feature embeddings from state-of-the-art image classification networks to identify the pediatric brain tumor, adamantinomatous craniopharyngioma (ACP). We optimized classification models for preoperative Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and combined CT and MRI datasets with demonstrated test accuracies of 85.3%, 83.3%, and 87.8%, respectively. Notably, our GA improved baseline model performance by up to 38%. This work advances DL and its applications within healthcare by identifying optimized networks in small-scale data contexts. The proposed system is easily implementable and scalable for non-invasive computer-aided diagnosis, even for uncommon diseases.
format article
author Eric W. Prince
Ros Whelan
David M. Mirsky
Nicholas Stence
Susan Staulcup
Paul Klimo
Richard C. E. Anderson
Toba N. Niazi
Gerald Grant
Mark Souweidane
James M. Johnston
Eric M. Jackson
David D. Limbrick
Amy Smith
Annie Drapeau
Joshua J. Chern
Lindsay Kilburn
Kevin Ginn
Robert Naftel
Roy Dudley
Elizabeth Tyler-Kabara
George Jallo
Michael H. Handler
Kenneth Jones
Andrew M. Donson
Nicholas K. Foreman
Todd C. Hankinson
author_facet Eric W. Prince
Ros Whelan
David M. Mirsky
Nicholas Stence
Susan Staulcup
Paul Klimo
Richard C. E. Anderson
Toba N. Niazi
Gerald Grant
Mark Souweidane
James M. Johnston
Eric M. Jackson
David D. Limbrick
Amy Smith
Annie Drapeau
Joshua J. Chern
Lindsay Kilburn
Kevin Ginn
Robert Naftel
Roy Dudley
Elizabeth Tyler-Kabara
George Jallo
Michael H. Handler
Kenneth Jones
Andrew M. Donson
Nicholas K. Foreman
Todd C. Hankinson
author_sort Eric W. Prince
title Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_short Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_full Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_fullStr Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_full_unstemmed Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
title_sort robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/48a196a679684d488c084efeeb434cda
work_keys_str_mv AT ericwprince robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT roswhelan robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT davidmmirsky robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT nicholasstence robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT susanstaulcup robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT paulklimo robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT richardceanderson robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT tobanniazi robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT geraldgrant robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT marksouweidane robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT jamesmjohnston robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT ericmjackson robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT daviddlimbrick robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT amysmith robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT anniedrapeau robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT joshuajchern robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT lindsaykilburn robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT kevinginn robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT robertnaftel robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT roydudley robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT elizabethtylerkabara robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT georgejallo robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT michaelhhandler robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT kennethjones robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT andrewmdonson robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT nicholaskforeman robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
AT toddchankinson robustdeeplearningclassificationofadamantinomatouscraniopharyngiomafromlimitedpreoperativeradiographicimages
_version_ 1718377857260978176