Size and lipid modification determine liposomal Indocyanine green performance for tumor imaging in a model of rectal cancer

Abstract Localization of rectal tumors is a challenge in minimally invasive surgery due to the lack of tactile sensation. We had developed liposomal indocyanine green (Lip-ICG) for localization of rectal tumor. In this study we evaluated the effects of liposome size and lipid PEGylation on imaging....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shoshi Bar-David, Liraz Larush, Noam Goder, Asaf Aizic, Ehud Zigmond, Chen Varol, Joseph Klausner, Shlomo Magdassi, Eran Nizri
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/48a320a22ddf425a9ab5891f7ba58bce
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:48a320a22ddf425a9ab5891f7ba58bce
record_format dspace
spelling oai:doaj.org-article:48a320a22ddf425a9ab5891f7ba58bce2021-12-02T15:10:02ZSize and lipid modification determine liposomal Indocyanine green performance for tumor imaging in a model of rectal cancer10.1038/s41598-019-45038-w2045-2322https://doaj.org/article/48a320a22ddf425a9ab5891f7ba58bce2019-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-45038-whttps://doaj.org/toc/2045-2322Abstract Localization of rectal tumors is a challenge in minimally invasive surgery due to the lack of tactile sensation. We had developed liposomal indocyanine green (Lip-ICG) for localization of rectal tumor. In this study we evaluated the effects of liposome size and lipid PEGylation on imaging. We used an endoscopically-guided orthotopic experimental rectal cancer model in which tumor fluorescence was determined at different time points after intravenous (i.v.) administration of Lip-ICG and PEGylated liposomes (PEG-Lip-ICG). Signal intensity was measured by tumor-to-background ratio (TBR), or normalized TBR (compared to TBR of free ICG). Fluorescence microscopy of tumor tissue was performed to determine fluorescence localization within the tissue and blood vessels. Liposomes of 60 nm showed an increased TBR compared with free ICG at 12 hours after i.v. injection: normalized TBR (nTBR) = 3.11 vs. 1, respectively (p = 0.006). Larger liposomes (100 nm and 140 nm) had comparable signal to free ICG (nTBR = 0.98 ± 0.02 and 0.78 ± 0.08, respectively), even when additional time points were examined (0.5, 3 and 24 hours). PEG-Lip- ICG were more efficient than Lip-ICG (TBR = 4.2 ± 0.18 vs. 2.5 ± 0.12, p < 0.01) presumably because of reduced uptake by the reticulo-endothelial system. ICG was found outside the capillaries in tumor margins. We conclude that size and lipid modification impact imaging intensity.Shoshi Bar-DavidLiraz LarushNoam GoderAsaf AizicEhud ZigmondChen VarolJoseph KlausnerShlomo MagdassiEran NizriNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-8 (2019)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Shoshi Bar-David
Liraz Larush
Noam Goder
Asaf Aizic
Ehud Zigmond
Chen Varol
Joseph Klausner
Shlomo Magdassi
Eran Nizri
Size and lipid modification determine liposomal Indocyanine green performance for tumor imaging in a model of rectal cancer
description Abstract Localization of rectal tumors is a challenge in minimally invasive surgery due to the lack of tactile sensation. We had developed liposomal indocyanine green (Lip-ICG) for localization of rectal tumor. In this study we evaluated the effects of liposome size and lipid PEGylation on imaging. We used an endoscopically-guided orthotopic experimental rectal cancer model in which tumor fluorescence was determined at different time points after intravenous (i.v.) administration of Lip-ICG and PEGylated liposomes (PEG-Lip-ICG). Signal intensity was measured by tumor-to-background ratio (TBR), or normalized TBR (compared to TBR of free ICG). Fluorescence microscopy of tumor tissue was performed to determine fluorescence localization within the tissue and blood vessels. Liposomes of 60 nm showed an increased TBR compared with free ICG at 12 hours after i.v. injection: normalized TBR (nTBR) = 3.11 vs. 1, respectively (p = 0.006). Larger liposomes (100 nm and 140 nm) had comparable signal to free ICG (nTBR = 0.98 ± 0.02 and 0.78 ± 0.08, respectively), even when additional time points were examined (0.5, 3 and 24 hours). PEG-Lip- ICG were more efficient than Lip-ICG (TBR = 4.2 ± 0.18 vs. 2.5 ± 0.12, p < 0.01) presumably because of reduced uptake by the reticulo-endothelial system. ICG was found outside the capillaries in tumor margins. We conclude that size and lipid modification impact imaging intensity.
format article
author Shoshi Bar-David
Liraz Larush
Noam Goder
Asaf Aizic
Ehud Zigmond
Chen Varol
Joseph Klausner
Shlomo Magdassi
Eran Nizri
author_facet Shoshi Bar-David
Liraz Larush
Noam Goder
Asaf Aizic
Ehud Zigmond
Chen Varol
Joseph Klausner
Shlomo Magdassi
Eran Nizri
author_sort Shoshi Bar-David
title Size and lipid modification determine liposomal Indocyanine green performance for tumor imaging in a model of rectal cancer
title_short Size and lipid modification determine liposomal Indocyanine green performance for tumor imaging in a model of rectal cancer
title_full Size and lipid modification determine liposomal Indocyanine green performance for tumor imaging in a model of rectal cancer
title_fullStr Size and lipid modification determine liposomal Indocyanine green performance for tumor imaging in a model of rectal cancer
title_full_unstemmed Size and lipid modification determine liposomal Indocyanine green performance for tumor imaging in a model of rectal cancer
title_sort size and lipid modification determine liposomal indocyanine green performance for tumor imaging in a model of rectal cancer
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/48a320a22ddf425a9ab5891f7ba58bce
work_keys_str_mv AT shoshibardavid sizeandlipidmodificationdetermineliposomalindocyaninegreenperformancefortumorimaginginamodelofrectalcancer
AT lirazlarush sizeandlipidmodificationdetermineliposomalindocyaninegreenperformancefortumorimaginginamodelofrectalcancer
AT noamgoder sizeandlipidmodificationdetermineliposomalindocyaninegreenperformancefortumorimaginginamodelofrectalcancer
AT asafaizic sizeandlipidmodificationdetermineliposomalindocyaninegreenperformancefortumorimaginginamodelofrectalcancer
AT ehudzigmond sizeandlipidmodificationdetermineliposomalindocyaninegreenperformancefortumorimaginginamodelofrectalcancer
AT chenvarol sizeandlipidmodificationdetermineliposomalindocyaninegreenperformancefortumorimaginginamodelofrectalcancer
AT josephklausner sizeandlipidmodificationdetermineliposomalindocyaninegreenperformancefortumorimaginginamodelofrectalcancer
AT shlomomagdassi sizeandlipidmodificationdetermineliposomalindocyaninegreenperformancefortumorimaginginamodelofrectalcancer
AT erannizri sizeandlipidmodificationdetermineliposomalindocyaninegreenperformancefortumorimaginginamodelofrectalcancer
_version_ 1718387749809029120