Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance

Introduction: High mercury (Hg) concentrations affect the chlorophyll in leaves, thereby modifying leaf spectra. Hyperspectra is a promising technique for the rapid, nondestructive evaluation of leaf Hg content. In this study, we investigated Hg contents and reflective hyperspectra of reed leaves (P...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Weiwei Liu, Mengjie Li, Manyin Zhang, Daan Wang, Ziliang Guo, Songyuan Long, Si Yang, Henian Wang, Wei Li, Yukun Hu, Yuanyun Wei, Hongye Xiao
Formato: article
Lenguaje:EN
Publicado: Taylor & Francis Group 2020
Materias:
Acceso en línea:https://doaj.org/article/48a6c61dd746499580b1e613f6492072
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:48a6c61dd746499580b1e613f6492072
record_format dspace
spelling oai:doaj.org-article:48a6c61dd746499580b1e613f64920722021-12-02T16:25:31ZEstimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance2332-887810.1080/20964129.2020.1726211https://doaj.org/article/48a6c61dd746499580b1e613f64920722020-12-01T00:00:00Zhttp://dx.doi.org/10.1080/20964129.2020.1726211https://doaj.org/toc/2332-8878Introduction: High mercury (Hg) concentrations affect the chlorophyll in leaves, thereby modifying leaf spectra. Hyperspectra is a promising technique for the rapid, nondestructive evaluation of leaf Hg content. In this study, we investigated Hg contents and reflective hyperspectra of reed leaves (Phragmites communis) in a gold mining (Jilin province, China). Spectral parameters sensitive to Hg content were identified through basic spectral transformations, continuous wavelet transformation (CWT), and spectral indices techniques. Leaf Hg inversion models were developed using stepwise multiple linear regression, partial least squares regression, and random forest algorithms.Outcomes: The results indicated that: 1) leaf Hg content decreased with increasing distance from the mine: Jiapigou (JPG) > Erdaocha (EDC) > Laojingchang (LJC) > Erdaogou (EDG) > Lingqian (LQ) > Weishahe (WSH). 2) Hg–sensitive wavelengths were primarily in the visible region; CWT increased the correlation between hyperspectral data and leaf Hg content, and improved the regression and accuracy of inversion; 3) the continuum removal–CWT–stepwise multiple linear regression was better for estimating low leaf Hg content; while the differential spectral index–partial least squares regression was better for estimating high leaf Hg content.Conclusion: These hyperspectral inversion methods could be used for rapid, nondestructive monitoring of wetland plants.Weiwei LiuMengjie LiManyin ZhangDaan WangZiliang GuoSongyuan LongSi YangHenian WangWei LiYukun HuYuanyun WeiHongye XiaoTaylor & Francis Grouparticlemercury pollutionreed leafhyperspectruminversion modelnondestructive monitoringEcologyQH540-549.5ENEcosystem Health and Sustainability, Vol 6, Iss 1 (2020)
institution DOAJ
collection DOAJ
language EN
topic mercury pollution
reed leaf
hyperspectrum
inversion model
nondestructive monitoring
Ecology
QH540-549.5
spellingShingle mercury pollution
reed leaf
hyperspectrum
inversion model
nondestructive monitoring
Ecology
QH540-549.5
Weiwei Liu
Mengjie Li
Manyin Zhang
Daan Wang
Ziliang Guo
Songyuan Long
Si Yang
Henian Wang
Wei Li
Yukun Hu
Yuanyun Wei
Hongye Xiao
Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance
description Introduction: High mercury (Hg) concentrations affect the chlorophyll in leaves, thereby modifying leaf spectra. Hyperspectra is a promising technique for the rapid, nondestructive evaluation of leaf Hg content. In this study, we investigated Hg contents and reflective hyperspectra of reed leaves (Phragmites communis) in a gold mining (Jilin province, China). Spectral parameters sensitive to Hg content were identified through basic spectral transformations, continuous wavelet transformation (CWT), and spectral indices techniques. Leaf Hg inversion models were developed using stepwise multiple linear regression, partial least squares regression, and random forest algorithms.Outcomes: The results indicated that: 1) leaf Hg content decreased with increasing distance from the mine: Jiapigou (JPG) > Erdaocha (EDC) > Laojingchang (LJC) > Erdaogou (EDG) > Lingqian (LQ) > Weishahe (WSH). 2) Hg–sensitive wavelengths were primarily in the visible region; CWT increased the correlation between hyperspectral data and leaf Hg content, and improved the regression and accuracy of inversion; 3) the continuum removal–CWT–stepwise multiple linear regression was better for estimating low leaf Hg content; while the differential spectral index–partial least squares regression was better for estimating high leaf Hg content.Conclusion: These hyperspectral inversion methods could be used for rapid, nondestructive monitoring of wetland plants.
format article
author Weiwei Liu
Mengjie Li
Manyin Zhang
Daan Wang
Ziliang Guo
Songyuan Long
Si Yang
Henian Wang
Wei Li
Yukun Hu
Yuanyun Wei
Hongye Xiao
author_facet Weiwei Liu
Mengjie Li
Manyin Zhang
Daan Wang
Ziliang Guo
Songyuan Long
Si Yang
Henian Wang
Wei Li
Yukun Hu
Yuanyun Wei
Hongye Xiao
author_sort Weiwei Liu
title Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance
title_short Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance
title_full Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance
title_fullStr Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance
title_full_unstemmed Estimating leaf mercury content in Phragmites australis based on leaf hyperspectral reflectance
title_sort estimating leaf mercury content in phragmites australis based on leaf hyperspectral reflectance
publisher Taylor & Francis Group
publishDate 2020
url https://doaj.org/article/48a6c61dd746499580b1e613f6492072
work_keys_str_mv AT weiweiliu estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT mengjieli estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT manyinzhang estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT daanwang estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT ziliangguo estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT songyuanlong estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT siyang estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT henianwang estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT weili estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT yukunhu estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT yuanyunwei estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
AT hongyexiao estimatingleafmercurycontentinphragmitesaustralisbasedonleafhyperspectralreflectance
_version_ 1718384048684924928