Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms
Abstract Forest aboveground biomass (AGB) plays an important role in the study of the carbon cycle and climate change in the global terrestrial ecosystem. AGB estimation based on remote sensing is an effective method for regional scale. In this study, Landsat 8 Operational Land Imager and Sentinel-1...
Guardado en:
Autores principales: | Yingchang Li, Mingyang Li, Chao Li, Zhenzhen Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/48b07a471e1445d18bc5d1b262e06d87 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Aboveground biomass estimation of black locust planted forests with aspect variable using machine learning regression algorithms
por: Quanping Ye, et al.
Publicado: (2021) -
Estimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data
por: Yueting Wang, et al.
Publicado: (2021) -
The use of machine learning methods to estimate aboveground biomass of grasslands: A review
por: Tiago G. Morais, et al.
Publicado: (2021) -
Estimation of Maize Leaf Area Index and Aboveground Biomass Based on Hyperspectral Data
por: SHU Meiyan, et al.
Publicado: (2021) -
Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm
por: Yinyin Wang, et al.
Publicado: (2017)