Preparation, Characterization, and <i>In Vitro</i> Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane
This study aims to examine the manufacture, characterization, and in vitro hemocompatibility of glutaraldehyde-crosslinked chitosan/carboxymethyl cellulose (CS/CMC-GA) as a hemodialysis membrane. The CS/CMC-GA membrane was prepared using the phase inversion method with 1.5% CS and 0.1% CMC. The chit...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Chemistry, Universitas Gadjah Mada
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/48c4d0b448b44caf8e2727216441cd8e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:48c4d0b448b44caf8e2727216441cd8e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:48c4d0b448b44caf8e2727216441cd8e2021-12-02T18:02:39ZPreparation, Characterization, and <i>In Vitro</i> Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane1411-94202460-157810.22146/ijc.61704https://doaj.org/article/48c4d0b448b44caf8e2727216441cd8e2021-09-01T00:00:00Zhttps://jurnal.ugm.ac.id/ijc/article/view/61704https://doaj.org/toc/1411-9420https://doaj.org/toc/2460-1578This study aims to examine the manufacture, characterization, and in vitro hemocompatibility of glutaraldehyde-crosslinked chitosan/carboxymethyl cellulose (CS/CMC-GA) as a hemodialysis membrane. The CS/CMC-GA membrane was prepared using the phase inversion method with 1.5% CS and 0.1% CMC. The chitosan was crosslinked with glutaraldehyde in various monomers ratios, and the membranes formed were characterized by FTIR, SEM, and TGA. Furthermore, the hydrophilicity, swelling, porosity, mechanical strength, and dialysis performance of the membranes against urea and creatinine were systematically examined, and their in-vitro hemocompatibility tests were also conducted. The results showed that the CS/CMC-GA membranes have higher hydrophilicity, swelling, porosity, mechanical strength, and better dialysis performance against urea and creatinine than chitosan without modification. In addition, the hemocompatibility test indicated that the CS/CMC-GA membranes have lower values of protein adsorption, thrombocyte attachment, hemolysis ratio, and partial thromboplastin time (PTT) than that of pristine chitosan. Based on these results, the CC/CMC-GA membranes have better hemocompatibility and the potential to be used as hemodialysis membranes.Khabibi KhabibiDwi SiswantaMudasir MudasirDepartment of Chemistry, Universitas Gadjah MadaarticlechitosancmcmembranehemodialysisChemistryQD1-999ENIndonesian Journal of Chemistry, Vol 21, Iss 5, Pp 1120-1131 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
chitosan cmc membrane hemodialysis Chemistry QD1-999 |
spellingShingle |
chitosan cmc membrane hemodialysis Chemistry QD1-999 Khabibi Khabibi Dwi Siswanta Mudasir Mudasir Preparation, Characterization, and <i>In Vitro</i> Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane |
description |
This study aims to examine the manufacture, characterization, and in vitro hemocompatibility of glutaraldehyde-crosslinked chitosan/carboxymethyl cellulose (CS/CMC-GA) as a hemodialysis membrane. The CS/CMC-GA membrane was prepared using the phase inversion method with 1.5% CS and 0.1% CMC. The chitosan was crosslinked with glutaraldehyde in various monomers ratios, and the membranes formed were characterized by FTIR, SEM, and TGA. Furthermore, the hydrophilicity, swelling, porosity, mechanical strength, and dialysis performance of the membranes against urea and creatinine were systematically examined, and their in-vitro hemocompatibility tests were also conducted. The results showed that the CS/CMC-GA membranes have higher hydrophilicity, swelling, porosity, mechanical strength, and better dialysis performance against urea and creatinine than chitosan without modification. In addition, the hemocompatibility test indicated that the CS/CMC-GA membranes have lower values of protein adsorption, thrombocyte attachment, hemolysis ratio, and partial thromboplastin time (PTT) than that of pristine chitosan. Based on these results, the CC/CMC-GA membranes have better hemocompatibility and the potential to be used as hemodialysis membranes. |
format |
article |
author |
Khabibi Khabibi Dwi Siswanta Mudasir Mudasir |
author_facet |
Khabibi Khabibi Dwi Siswanta Mudasir Mudasir |
author_sort |
Khabibi Khabibi |
title |
Preparation, Characterization, and <i>In Vitro</i> Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane |
title_short |
Preparation, Characterization, and <i>In Vitro</i> Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane |
title_full |
Preparation, Characterization, and <i>In Vitro</i> Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane |
title_fullStr |
Preparation, Characterization, and <i>In Vitro</i> Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane |
title_full_unstemmed |
Preparation, Characterization, and <i>In Vitro</i> Hemocompatibility of Glutaraldehyde-Crosslinked Chitosan/Carboxymethylcellulose as Hemodialysis Membrane |
title_sort |
preparation, characterization, and <i>in vitro</i> hemocompatibility of glutaraldehyde-crosslinked chitosan/carboxymethylcellulose as hemodialysis membrane |
publisher |
Department of Chemistry, Universitas Gadjah Mada |
publishDate |
2021 |
url |
https://doaj.org/article/48c4d0b448b44caf8e2727216441cd8e |
work_keys_str_mv |
AT khabibikhabibi preparationcharacterizationandiinvitroihemocompatibilityofglutaraldehydecrosslinkedchitosancarboxymethylcelluloseashemodialysismembrane AT dwisiswanta preparationcharacterizationandiinvitroihemocompatibilityofglutaraldehydecrosslinkedchitosancarboxymethylcelluloseashemodialysismembrane AT mudasirmudasir preparationcharacterizationandiinvitroihemocompatibilityofglutaraldehydecrosslinkedchitosancarboxymethylcelluloseashemodialysismembrane |
_version_ |
1718378864591241216 |