Protein-based antigen presentation platforms for nanoparticle vaccines
Abstract Modern vaccine design has sought a minimalization approach, moving to the isolation of antigens from pathogens that invoke a strong neutralizing immune response. This approach has created safer vaccines but may limit vaccine efficacy due to poor immunogenicity. To combat global diseases suc...
Saved in:
Main Authors: | , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/48d7babf85fb43848b0cf587c51a6749 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Modern vaccine design has sought a minimalization approach, moving to the isolation of antigens from pathogens that invoke a strong neutralizing immune response. This approach has created safer vaccines but may limit vaccine efficacy due to poor immunogenicity. To combat global diseases such as COVID-19, malaria, and AIDS there is a clear urgency for more effective next-generation vaccines. One approach to improve the immunogenicity of vaccines is the use of nanoparticle platforms that present a repetitive array of antigen on its surface. This technology has been shown to improve antigen presenting cell uptake, lymph node trafficking, and B-cell activation through increased avidity and particle size. With a focus on design, we summarize natural platforms, methods of antigen attachment, and advancements in generating self-assembly that have led to new engineered platforms. We further examine critical parameters that will direct the usage and development of more effective platforms. |
---|