Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers

Abstract Atomically thin two-dimensional (2D) materials can be vertically stacked with van der Waals bonds, which enable interlayer coupling. In the particular case of transition metal dichalcogenide (TMD) bilayers, the relative direction between the two monolayers, coined as twist-angle, modifies t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. Psilodimitrakopoulos, A. Orekhov, L. Mouchliadis, D. Jannis, G. M. Maragkakis, G. Kourmoulakis, N. Gauquelin, G. Kioseoglou, J. Verbeeck, E. Stratakis
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/48e8637e07454cdf9456f95a50957748
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:48e8637e07454cdf9456f95a50957748
record_format dspace
spelling oai:doaj.org-article:48e8637e07454cdf9456f95a509577482021-12-02T14:54:52ZOptical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers10.1038/s41699-021-00258-52397-7132https://doaj.org/article/48e8637e07454cdf9456f95a509577482021-09-01T00:00:00Zhttps://doi.org/10.1038/s41699-021-00258-5https://doaj.org/toc/2397-7132Abstract Atomically thin two-dimensional (2D) materials can be vertically stacked with van der Waals bonds, which enable interlayer coupling. In the particular case of transition metal dichalcogenide (TMD) bilayers, the relative direction between the two monolayers, coined as twist-angle, modifies the crystal symmetry and creates a superlattice with exciting properties. Here, we demonstrate an all-optical method for pixel-by-pixel mapping of the twist-angle with a resolution of 0.55(°), via polarization-resolved second harmonic generation (P-SHG) microscopy and we compare it with four-dimensional scanning transmission electron microscopy (4D STEM). It is found that the twist-angle imaging of WS2 bilayers, using the P-SHG technique is in excellent agreement with that obtained using electron diffraction. The main advantages of the optical approach are that the characterization is performed on the same substrate that the device is created on and that it is three orders of magnitude faster than the 4D STEM. We envisage that the optical P-SHG imaging could become the gold standard for the quality examination of TMD superlattice-based devices.S. PsilodimitrakopoulosA. OrekhovL. MouchliadisD. JannisG. M. MaragkakisG. KourmoulakisN. GauquelinG. KioseoglouJ. VerbeeckE. StratakisNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ChemistryQD1-999ENnpj 2D Materials and Applications, Vol 5, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Chemistry
QD1-999
S. Psilodimitrakopoulos
A. Orekhov
L. Mouchliadis
D. Jannis
G. M. Maragkakis
G. Kourmoulakis
N. Gauquelin
G. Kioseoglou
J. Verbeeck
E. Stratakis
Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers
description Abstract Atomically thin two-dimensional (2D) materials can be vertically stacked with van der Waals bonds, which enable interlayer coupling. In the particular case of transition metal dichalcogenide (TMD) bilayers, the relative direction between the two monolayers, coined as twist-angle, modifies the crystal symmetry and creates a superlattice with exciting properties. Here, we demonstrate an all-optical method for pixel-by-pixel mapping of the twist-angle with a resolution of 0.55(°), via polarization-resolved second harmonic generation (P-SHG) microscopy and we compare it with four-dimensional scanning transmission electron microscopy (4D STEM). It is found that the twist-angle imaging of WS2 bilayers, using the P-SHG technique is in excellent agreement with that obtained using electron diffraction. The main advantages of the optical approach are that the characterization is performed on the same substrate that the device is created on and that it is three orders of magnitude faster than the 4D STEM. We envisage that the optical P-SHG imaging could become the gold standard for the quality examination of TMD superlattice-based devices.
format article
author S. Psilodimitrakopoulos
A. Orekhov
L. Mouchliadis
D. Jannis
G. M. Maragkakis
G. Kourmoulakis
N. Gauquelin
G. Kioseoglou
J. Verbeeck
E. Stratakis
author_facet S. Psilodimitrakopoulos
A. Orekhov
L. Mouchliadis
D. Jannis
G. M. Maragkakis
G. Kourmoulakis
N. Gauquelin
G. Kioseoglou
J. Verbeeck
E. Stratakis
author_sort S. Psilodimitrakopoulos
title Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers
title_short Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers
title_full Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers
title_fullStr Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers
title_full_unstemmed Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers
title_sort optical versus electron diffraction imaging of twist-angle in 2d transition metal dichalcogenide bilayers
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/48e8637e07454cdf9456f95a50957748
work_keys_str_mv AT spsilodimitrakopoulos opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
AT aorekhov opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
AT lmouchliadis opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
AT djannis opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
AT gmmaragkakis opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
AT gkourmoulakis opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
AT ngauquelin opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
AT gkioseoglou opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
AT jverbeeck opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
AT estratakis opticalversuselectrondiffractionimagingoftwistanglein2dtransitionmetaldichalcogenidebilayers
_version_ 1718389322951950336