Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies

Reliable inference of gene interactions from perturbation experiments remains a challenge. Here, the authors quantify the upper limits of transcriptional network inference from knockout screens, identify the key determinants of accuracy, and introduce an unbiased and scalable inference algorithm.

Guardado en:
Detalles Bibliográficos
Autores principales: C. F. Blum, N. Heramvand, A. S. Khonsari, M. Kollmann
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/48ea6446771949eeae6ac10c57fbbdff
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:48ea6446771949eeae6ac10c57fbbdff
record_format dspace
spelling oai:doaj.org-article:48ea6446771949eeae6ac10c57fbbdff2021-12-02T16:49:17ZExperimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies10.1038/s41467-017-02489-x2041-1723https://doaj.org/article/48ea6446771949eeae6ac10c57fbbdff2018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02489-xhttps://doaj.org/toc/2041-1723Reliable inference of gene interactions from perturbation experiments remains a challenge. Here, the authors quantify the upper limits of transcriptional network inference from knockout screens, identify the key determinants of accuracy, and introduce an unbiased and scalable inference algorithm.C. F. BlumN. HeramvandA. S. KhonsariM. KollmannNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
C. F. Blum
N. Heramvand
A. S. Khonsari
M. Kollmann
Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
description Reliable inference of gene interactions from perturbation experiments remains a challenge. Here, the authors quantify the upper limits of transcriptional network inference from knockout screens, identify the key determinants of accuracy, and introduce an unbiased and scalable inference algorithm.
format article
author C. F. Blum
N. Heramvand
A. S. Khonsari
M. Kollmann
author_facet C. F. Blum
N. Heramvand
A. S. Khonsari
M. Kollmann
author_sort C. F. Blum
title Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
title_short Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
title_full Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
title_fullStr Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
title_full_unstemmed Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
title_sort experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/48ea6446771949eeae6ac10c57fbbdff
work_keys_str_mv AT cfblum experimentalnoisecutoffboostsinferabilityoftranscriptionalnetworksinlargescalegenedeletionstudies
AT nheramvand experimentalnoisecutoffboostsinferabilityoftranscriptionalnetworksinlargescalegenedeletionstudies
AT askhonsari experimentalnoisecutoffboostsinferabilityoftranscriptionalnetworksinlargescalegenedeletionstudies
AT mkollmann experimentalnoisecutoffboostsinferabilityoftranscriptionalnetworksinlargescalegenedeletionstudies
_version_ 1718383393632157696