Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
Reliable inference of gene interactions from perturbation experiments remains a challenge. Here, the authors quantify the upper limits of transcriptional network inference from knockout screens, identify the key determinants of accuracy, and introduce an unbiased and scalable inference algorithm.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/48ea6446771949eeae6ac10c57fbbdff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:48ea6446771949eeae6ac10c57fbbdff |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:48ea6446771949eeae6ac10c57fbbdff2021-12-02T16:49:17ZExperimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies10.1038/s41467-017-02489-x2041-1723https://doaj.org/article/48ea6446771949eeae6ac10c57fbbdff2018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02489-xhttps://doaj.org/toc/2041-1723Reliable inference of gene interactions from perturbation experiments remains a challenge. Here, the authors quantify the upper limits of transcriptional network inference from knockout screens, identify the key determinants of accuracy, and introduce an unbiased and scalable inference algorithm.C. F. BlumN. HeramvandA. S. KhonsariM. KollmannNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-10 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q C. F. Blum N. Heramvand A. S. Khonsari M. Kollmann Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies |
description |
Reliable inference of gene interactions from perturbation experiments remains a challenge. Here, the authors quantify the upper limits of transcriptional network inference from knockout screens, identify the key determinants of accuracy, and introduce an unbiased and scalable inference algorithm. |
format |
article |
author |
C. F. Blum N. Heramvand A. S. Khonsari M. Kollmann |
author_facet |
C. F. Blum N. Heramvand A. S. Khonsari M. Kollmann |
author_sort |
C. F. Blum |
title |
Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies |
title_short |
Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies |
title_full |
Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies |
title_fullStr |
Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies |
title_full_unstemmed |
Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies |
title_sort |
experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/48ea6446771949eeae6ac10c57fbbdff |
work_keys_str_mv |
AT cfblum experimentalnoisecutoffboostsinferabilityoftranscriptionalnetworksinlargescalegenedeletionstudies AT nheramvand experimentalnoisecutoffboostsinferabilityoftranscriptionalnetworksinlargescalegenedeletionstudies AT askhonsari experimentalnoisecutoffboostsinferabilityoftranscriptionalnetworksinlargescalegenedeletionstudies AT mkollmann experimentalnoisecutoffboostsinferabilityoftranscriptionalnetworksinlargescalegenedeletionstudies |
_version_ |
1718383393632157696 |