Experimental noise cutoff boosts inferability of transcriptional networks in large-scale gene-deletion studies
Reliable inference of gene interactions from perturbation experiments remains a challenge. Here, the authors quantify the upper limits of transcriptional network inference from knockout screens, identify the key determinants of accuracy, and introduce an unbiased and scalable inference algorithm.
Enregistré dans:
Auteurs principaux: | C. F. Blum, N. Heramvand, A. S. Khonsari, M. Kollmann |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/48ea6446771949eeae6ac10c57fbbdff |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Impact of noise on molecular network inference.
par: Radhakrishnan Nagarajan, et autres
Publié: (2013) -
Probabilistic phylogenetic inference with insertions and deletions.
par: Elena Rivas, et autres
Publié: (2008) -
Stroke outcome assessment: Optimizing cutoff scores for the Longshi Scale, modified Rankin Scale and Barthel Index.
par: Mingchao Zhou, et autres
Publié: (2021) -
Transcriptional and Post-Transcriptional Polar Effects in Bacterial Gene Deletion Libraries
par: André Mateus, et autres
Publié: (2021) -
Finite cutoff CFT's and composite operators
par: S. Dutta, et autres
Publié: (2021)