Chemical shift extremum of 129Xe(aq) reveals details of hydrophobic solvation

Abstract The 129Xe chemical shift in an aqueous solution exhibits a non-monotonic temperature dependence, featuring a maximum at 311 K. This is in contrast to most liquids, where the monotonic decrease of the shift follows that of liquid density. In particular, the shift maximum in water occurs at a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Petri Peuravaara, Jouni Karjalainen, Jianfeng Zhu, Jiří Mareš, Perttu Lantto, Juha Vaara
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4902d5eb630c4358bff648489c14cc1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4902d5eb630c4358bff648489c14cc1b
record_format dspace
spelling oai:doaj.org-article:4902d5eb630c4358bff648489c14cc1b2021-12-02T11:41:02ZChemical shift extremum of 129Xe(aq) reveals details of hydrophobic solvation10.1038/s41598-018-25418-42045-2322https://doaj.org/article/4902d5eb630c4358bff648489c14cc1b2018-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-25418-4https://doaj.org/toc/2045-2322Abstract The 129Xe chemical shift in an aqueous solution exhibits a non-monotonic temperature dependence, featuring a maximum at 311 K. This is in contrast to most liquids, where the monotonic decrease of the shift follows that of liquid density. In particular, the shift maximum in water occurs at a higher temperature than that of the maximum density. We replicate this behaviour qualitatively via a molecular dynamics simulation and computing the 129Xe chemical shift for snapshots of the simulation trajectory. We also construct a semianalytical model, in which the Xe atom occupies a cavity constituted by a spherical water shell, consisting of an even distribution of solvent molecules. The temperature dependence of the shift is seen to result from a product of the decreasing local water density and an increasing term corresponding to the energetics of the Xe-H2O collisions. The latter moves the chemical shift maximum up in temperature, as compared to the density maximum. In water, the computed temperature of the shift maximum is found to be sensitive to both the details of the binary chemical shift function and the coordination number. This work suggests that, material parameters allowing, the maximum should be exhibited by other liquids, too.Petri PeuravaaraJouni KarjalainenJianfeng ZhuJiří MarešPerttu LanttoJuha VaaraNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-11 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Petri Peuravaara
Jouni Karjalainen
Jianfeng Zhu
Jiří Mareš
Perttu Lantto
Juha Vaara
Chemical shift extremum of 129Xe(aq) reveals details of hydrophobic solvation
description Abstract The 129Xe chemical shift in an aqueous solution exhibits a non-monotonic temperature dependence, featuring a maximum at 311 K. This is in contrast to most liquids, where the monotonic decrease of the shift follows that of liquid density. In particular, the shift maximum in water occurs at a higher temperature than that of the maximum density. We replicate this behaviour qualitatively via a molecular dynamics simulation and computing the 129Xe chemical shift for snapshots of the simulation trajectory. We also construct a semianalytical model, in which the Xe atom occupies a cavity constituted by a spherical water shell, consisting of an even distribution of solvent molecules. The temperature dependence of the shift is seen to result from a product of the decreasing local water density and an increasing term corresponding to the energetics of the Xe-H2O collisions. The latter moves the chemical shift maximum up in temperature, as compared to the density maximum. In water, the computed temperature of the shift maximum is found to be sensitive to both the details of the binary chemical shift function and the coordination number. This work suggests that, material parameters allowing, the maximum should be exhibited by other liquids, too.
format article
author Petri Peuravaara
Jouni Karjalainen
Jianfeng Zhu
Jiří Mareš
Perttu Lantto
Juha Vaara
author_facet Petri Peuravaara
Jouni Karjalainen
Jianfeng Zhu
Jiří Mareš
Perttu Lantto
Juha Vaara
author_sort Petri Peuravaara
title Chemical shift extremum of 129Xe(aq) reveals details of hydrophobic solvation
title_short Chemical shift extremum of 129Xe(aq) reveals details of hydrophobic solvation
title_full Chemical shift extremum of 129Xe(aq) reveals details of hydrophobic solvation
title_fullStr Chemical shift extremum of 129Xe(aq) reveals details of hydrophobic solvation
title_full_unstemmed Chemical shift extremum of 129Xe(aq) reveals details of hydrophobic solvation
title_sort chemical shift extremum of 129xe(aq) reveals details of hydrophobic solvation
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/4902d5eb630c4358bff648489c14cc1b
work_keys_str_mv AT petripeuravaara chemicalshiftextremumof129xeaqrevealsdetailsofhydrophobicsolvation
AT jounikarjalainen chemicalshiftextremumof129xeaqrevealsdetailsofhydrophobicsolvation
AT jianfengzhu chemicalshiftextremumof129xeaqrevealsdetailsofhydrophobicsolvation
AT jirimares chemicalshiftextremumof129xeaqrevealsdetailsofhydrophobicsolvation
AT perttulantto chemicalshiftextremumof129xeaqrevealsdetailsofhydrophobicsolvation
AT juhavaara chemicalshiftextremumof129xeaqrevealsdetailsofhydrophobicsolvation
_version_ 1718395458578022400