Including Leaf Traits Improves a Deep Neural Network Model for Predicting Photosynthetic Capacity from Reflectance
Accurate knowledge of photosynthetic capacity is critical for understanding the carbon cycle under climate change. Despite the fact that deep neural network (DNN) models are increasingly applied across a wide range of fields, there are very few attempts to predict leaf photosynthetic capacity (indic...
Guardado en:
Autores principales: | Guangman Song, Quan Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/490686a6ae5d4413a20b37a7af168bb2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Characteristics of an Individual Leaf of Wheat Grown under Nitrogen Gradient
por: Jae Gyeong Jung, et al.
Publicado: (2021) -
Photosynthetic Characteristics of Three Cohabitated Macroalgae in the Daya Bay, and Their Responses to Temperature Rises
por: Xiaohan Shi, et al.
Publicado: (2021) -
Transcriptome Analysis in the Head Kidney of Rainbow Trout (<i>Oncorhynchus mykiss</i>) Immunized with a Combined Vaccine of Formalin-Inactivated <i>Aeromonas salmonicida</i> and <i>Vibrio anguillarum</i>
por: Jongwon Lim, et al.
Publicado: (2021) -
Emergence of Methicillin-Resistant <i>Staphylococcus aureus</i> ST239/241 <i>SCCmec</i>-III Mercury in Eastern Algeria
por: Hanane Aouati, et al.
Publicado: (2021) -
An Elderly COVID-19 Patient with Community-Acquired <i>Legionella</i> and <i>Mycoplasma</i> Coinfections: A Rare Case Report
por: Sari T. S. Alhuofie
Publicado: (2021)