Observation of vortex-antivortex pairing in decaying 2D turbulence of a superfluid gas

Abstract In a two-dimensional (2D) classical fluid, a large-scale flow structure emerges out of turbulence, which is known as the inverse energy cascade where energy flows from small to large length scales. An interesting question is whether this phenomenon can occur in a superfluid, which is invisc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sang Won Seo, Bumsuk Ko, Joon Hyun Kim, Y. Shin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/491064c931db4dd8b8c90254b8aa4e35
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In a two-dimensional (2D) classical fluid, a large-scale flow structure emerges out of turbulence, which is known as the inverse energy cascade where energy flows from small to large length scales. An interesting question is whether this phenomenon can occur in a superfluid, which is inviscid and irrotational by nature. Atomic Bose-Einstein condensates (BECs) of highly oblate geometry provide an experimental venue for studying 2D superfluid turbulence, but their full investigation has been hindered due to a lack of the circulation sign information of individual quantum vortices in a turbulent sample. Here, we demonstrate a vortex sign detection method by using Bragg scattering, and we investigate decaying turbulence in a highly oblate BEC at low temperatures, with our lowest being ~0.5T c , where T c is the superfluid critical temperature. We observe that weak spatial pairing between vortices and antivortices develops in the turbulent BEC, which corresponds to the vortex-dipole gas regime predicted for high dissipation. Our results provide a direct quantitative marker for the survey of various 2D turbulence regimes in the BEC system.