Correlation Effects in Trimeric Acylphloroglucinols
Trimeric acylphloroglucinols (T-ACPLs) are a subclass of the large class of acylphloroglucinols—derivatives of 1,3,5-trihydroxybenzene containing an R–C=O group. T-ACPL molecules contain three acylphloroglucinol moieties linked by methylene bridges. Many of them are present in natural sources and ex...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4910708b267f4b6abb672f1ba12927af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4910708b267f4b6abb672f1ba12927af |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4910708b267f4b6abb672f1ba12927af2021-11-25T17:17:17ZCorrelation Effects in Trimeric Acylphloroglucinols10.3390/computation91101212079-3197https://doaj.org/article/4910708b267f4b6abb672f1ba12927af2021-11-01T00:00:00Zhttps://www.mdpi.com/2079-3197/9/11/121https://doaj.org/toc/2079-3197Trimeric acylphloroglucinols (T-ACPLs) are a subclass of the large class of acylphloroglucinols—derivatives of 1,3,5-trihydroxybenzene containing an R–C=O group. T-ACPL molecules contain three acylphloroglucinol moieties linked by methylene bridges. Many of them are present in natural sources and exhibit biological activities, often better than the corresponding activities of monomeric acylphloroglucinols. All the stable conformers of T-ACPLs contain seven intramolecular hydrogen bonds, which constitute the dominant stabilising factors. A total of 38 different T-ACPLs, including both naturally occurring and model molecules, have been calculated at the HF and DFT/B3LYP levels. The DFT/B3LYP calculations were carried out both without and with Grimme’s dispersion correction, to highlight the dispersion (and, therefore, also electron correlation) effects for these molecules. The roles of dispersion are evaluated considering the effects of Grimme’s correction on the estimation of the conformers’ energies, the description of the characteristics of the individual hydrogen bonds, the conformers’ geometries and other molecular properties. Overall, the results offer a comprehensive overview of the conformational preferences of T-ACPL molecules, their intramolecular hydrogen bond patterns, and the correlation effects on their properties.Liliana MamminoMDPI AGarticleacylphloroglucinolseffects of electron correlation on molecular propertieselectron correlationGrimme’s dispersion correctionintramolecular hydrogen bondingstacking interactionsElectronic computers. Computer scienceQA75.5-76.95ENComputation, Vol 9, Iss 121, p 121 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
acylphloroglucinols effects of electron correlation on molecular properties electron correlation Grimme’s dispersion correction intramolecular hydrogen bonding stacking interactions Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
acylphloroglucinols effects of electron correlation on molecular properties electron correlation Grimme’s dispersion correction intramolecular hydrogen bonding stacking interactions Electronic computers. Computer science QA75.5-76.95 Liliana Mammino Correlation Effects in Trimeric Acylphloroglucinols |
description |
Trimeric acylphloroglucinols (T-ACPLs) are a subclass of the large class of acylphloroglucinols—derivatives of 1,3,5-trihydroxybenzene containing an R–C=O group. T-ACPL molecules contain three acylphloroglucinol moieties linked by methylene bridges. Many of them are present in natural sources and exhibit biological activities, often better than the corresponding activities of monomeric acylphloroglucinols. All the stable conformers of T-ACPLs contain seven intramolecular hydrogen bonds, which constitute the dominant stabilising factors. A total of 38 different T-ACPLs, including both naturally occurring and model molecules, have been calculated at the HF and DFT/B3LYP levels. The DFT/B3LYP calculations were carried out both without and with Grimme’s dispersion correction, to highlight the dispersion (and, therefore, also electron correlation) effects for these molecules. The roles of dispersion are evaluated considering the effects of Grimme’s correction on the estimation of the conformers’ energies, the description of the characteristics of the individual hydrogen bonds, the conformers’ geometries and other molecular properties. Overall, the results offer a comprehensive overview of the conformational preferences of T-ACPL molecules, their intramolecular hydrogen bond patterns, and the correlation effects on their properties. |
format |
article |
author |
Liliana Mammino |
author_facet |
Liliana Mammino |
author_sort |
Liliana Mammino |
title |
Correlation Effects in Trimeric Acylphloroglucinols |
title_short |
Correlation Effects in Trimeric Acylphloroglucinols |
title_full |
Correlation Effects in Trimeric Acylphloroglucinols |
title_fullStr |
Correlation Effects in Trimeric Acylphloroglucinols |
title_full_unstemmed |
Correlation Effects in Trimeric Acylphloroglucinols |
title_sort |
correlation effects in trimeric acylphloroglucinols |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/4910708b267f4b6abb672f1ba12927af |
work_keys_str_mv |
AT lilianamammino correlationeffectsintrimericacylphloroglucinols |
_version_ |
1718412526662713344 |