PEDF, a pleiotropic WTC-LI biomarker: Machine learning biomarker identification and validation.
Biomarkers predict World Trade Center-Lung Injury (WTC-LI); however, there remains unaddressed multicollinearity in our serum cytokines, chemokines, and high-throughput platform datasets used to phenotype WTC-disease. To address this concern, we used automated, machine-learning, high-dimensional dat...
Guardado en:
Autores principales: | George Crowley, James Kim, Sophia Kwon, Rachel Lam, David J Prezant, Mengling Liu, Anna Nolan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/491b3b0778244ef085dbd2d7c26130a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predictive Biomarkers of Gastroesophageal Reflux Disease and Barrett’s Esophagus in World Trade Center Exposed Firefighters: a 15 Year Longitudinal Study
por: Syed H. Haider, et al.
Publicado: (2018) -
Preface to the Special Issue on WTC 2017
por: Editor-in-Chief
Publicado: (2018) -
Identification and validation of potential novel biomarkers for oral squamous cell carcinoma
por: Mengxue Zhang, et al.
Publicado: (2021) -
Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer's disease.
por: Richard J Perrin, et al.
Publicado: (2011) -
Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning
por: Ahmed Hammad, et al.
Publicado: (2021)