Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells

Complex interactions between different host immune cell types can determine the outcome of pathogen infections. Here, Avraham and colleagues present a deconvolution algorithm that uses single-cell RNA and bulk RNA sequencing measurements of pathogen-infected cells to predict disease risk outcomes.

Guardado en:
Detalles Bibliográficos
Autores principales: Noa Bossel Ben-Moshe, Shelly Hen-Avivi, Natalia Levitin, Dror Yehezkel, Marije Oosting, Leo A. B. Joosten, Mihai G. Netea, Roi Avraham
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/4934fef129ce45bf965afdfe39cd13bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Complex interactions between different host immune cell types can determine the outcome of pathogen infections. Here, Avraham and colleagues present a deconvolution algorithm that uses single-cell RNA and bulk RNA sequencing measurements of pathogen-infected cells to predict disease risk outcomes.