GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain

Hyper-wavelet transforms, such as a non-subsampled shearlet transform (NSST), are one of the mainstream algorithms for removing random noise from ground-penetrating radar (GPR) images. Because GPR image noise is non-uniform, the use of a single fixed threshold for noisy coefficients in each sub-band...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xingkun He, Can Wang, Rongyao Zheng, Xiwen Li
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
GPR
Q
Acceso en línea:https://doaj.org/article/49369f7eac084983a72749f85e32ef09
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:49369f7eac084983a72749f85e32ef09
record_format dspace
spelling oai:doaj.org-article:49369f7eac084983a72749f85e32ef092021-11-11T18:55:56ZGPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain10.3390/rs132144162072-4292https://doaj.org/article/49369f7eac084983a72749f85e32ef092021-11-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/21/4416https://doaj.org/toc/2072-4292Hyper-wavelet transforms, such as a non-subsampled shearlet transform (NSST), are one of the mainstream algorithms for removing random noise from ground-penetrating radar (GPR) images. Because GPR image noise is non-uniform, the use of a single fixed threshold for noisy coefficients in each sub-band of hyper-wavelet denoising algorithms is not appropriate. To overcome this problem, a novel NSST-based GPR image denoising grey wolf optimisation (GWO) algorithm is proposed. First, a time-varying threshold function based on the trend of noise changes in GPR images is proposed. Second, an edge area recognition and protection method based on the Canny algorithm is proposed. Finally, GWO is employed to select appropriate parameters for the time-varying threshold function and edge area protection method. The Natural Image Quality Evaluator is utilised as the optimisation index. The experiment results demonstrate that the proposed method provides excellent noise removal performance while protecting edge signals.Xingkun HeCan WangRongyao ZhengXiwen LiMDPI AGarticleGPRimage denoisinggrey wolf optimisationnon-subsampled shearlet transformthreshold functionScienceQENRemote Sensing, Vol 13, Iss 4416, p 4416 (2021)
institution DOAJ
collection DOAJ
language EN
topic GPR
image denoising
grey wolf optimisation
non-subsampled shearlet transform
threshold function
Science
Q
spellingShingle GPR
image denoising
grey wolf optimisation
non-subsampled shearlet transform
threshold function
Science
Q
Xingkun He
Can Wang
Rongyao Zheng
Xiwen Li
GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
description Hyper-wavelet transforms, such as a non-subsampled shearlet transform (NSST), are one of the mainstream algorithms for removing random noise from ground-penetrating radar (GPR) images. Because GPR image noise is non-uniform, the use of a single fixed threshold for noisy coefficients in each sub-band of hyper-wavelet denoising algorithms is not appropriate. To overcome this problem, a novel NSST-based GPR image denoising grey wolf optimisation (GWO) algorithm is proposed. First, a time-varying threshold function based on the trend of noise changes in GPR images is proposed. Second, an edge area recognition and protection method based on the Canny algorithm is proposed. Finally, GWO is employed to select appropriate parameters for the time-varying threshold function and edge area protection method. The Natural Image Quality Evaluator is utilised as the optimisation index. The experiment results demonstrate that the proposed method provides excellent noise removal performance while protecting edge signals.
format article
author Xingkun He
Can Wang
Rongyao Zheng
Xiwen Li
author_facet Xingkun He
Can Wang
Rongyao Zheng
Xiwen Li
author_sort Xingkun He
title GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
title_short GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
title_full GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
title_fullStr GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
title_full_unstemmed GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
title_sort gpr image noise removal using grey wolf optimisation in the nsst domain
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/49369f7eac084983a72749f85e32ef09
work_keys_str_mv AT xingkunhe gprimagenoiseremovalusinggreywolfoptimisationinthensstdomain
AT canwang gprimagenoiseremovalusinggreywolfoptimisationinthensstdomain
AT rongyaozheng gprimagenoiseremovalusinggreywolfoptimisationinthensstdomain
AT xiwenli gprimagenoiseremovalusinggreywolfoptimisationinthensstdomain
_version_ 1718431643000111104