GPR Image Noise Removal Using Grey Wolf Optimisation in the NSST Domain
Hyper-wavelet transforms, such as a non-subsampled shearlet transform (NSST), are one of the mainstream algorithms for removing random noise from ground-penetrating radar (GPR) images. Because GPR image noise is non-uniform, the use of a single fixed threshold for noisy coefficients in each sub-band...
Guardado en:
Autores principales: | Xingkun He, Can Wang, Rongyao Zheng, Xiwen Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/49369f7eac084983a72749f85e32ef09 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Parameter estimation of Muskingum model using grey wolf optimizer algorithm
por: Reyhaneh Akbari, et al.
Publicado: (2021) -
New Sequential and Parallel Support Vector Machine with Grey Wolf Optimizer for Breast Cancer Diagnosis
por: Elsayed Badr, et al.
Publicado: (2022) -
Towards design of compound channels with minimum overall cost through grey wolf optimization algorithm
por: Kiyoumars Roushangar, et al.
Publicado: (2021) -
Non-subsampled shearlet transform remote sensing image fusion combined with parameter-adaptive PCNN
por: CHENG Feifei, et al.
Publicado: (2021) -
QDCT-Based Blind Color Image Watermarking With Aid of GWO and DnCNN for Performance Improvement
por: Ling-Yuan Hsu, et al.
Publicado: (2021)