Emergence of coupling-induced oscillations and broken symmetries in heterogeneously driven nonlinear reaction networks
Abstract Many natural systems including the brain comprise coupled elements that are stimulated non-uniformly. In this paper we show that heterogeneously driven networks of excitatory-inhibitory units exhibit a diverse range of collective phenomena, including the appearance of spontaneous oscillatio...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/496042a165254bc4ad162751c95c92b8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Many natural systems including the brain comprise coupled elements that are stimulated non-uniformly. In this paper we show that heterogeneously driven networks of excitatory-inhibitory units exhibit a diverse range of collective phenomena, including the appearance of spontaneous oscillations upon coupling quiescent elements. On varying the coupling strength a previously unreported transition is seen wherein the symmetries of the synchronization patterns in the stimulated and unstimulated groups undergo mutual exchange. The system also exhibits coexisting chaotic and non-chaotic attractors - a result that may be of interest in connection to earlier reports of varying degrees of chaoticity in the brain. |
---|