A Highly Accurate NILM: With an Electro-Spectral Space That Best Fits Algorithm’s National Deployment Requirements
The central problems of some of the existing Non-Intrusive Load Monitoring (NILM) algorithms are indicated as: (1) higher required electrical device identification accuracy; (2) the fact that they enable training over a larger device count; and (3) their ability to be trained faster, limiting them f...
Guardado en:
Autores principales: | Netzah Calamaro, Moshe Donko, Doron Shmilovitz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/498634edcd114e9c8e0574c058a5dcb0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques
por: Mohamed Sraitih, et al.
Publicado: (2021) -
The experience of applying mathematical methods for analysis of the microgeneration sector in Russia
por: Vladimirovich Gavriusev Sergei, et al.
Publicado: (2021) -
KNN-SC: Novel Spectral Clustering Algorithm Using k-Nearest Neighbors
por: Jeong-Hun Kim, et al.
Publicado: (2021) -
Power Profile and Thresholding Assisted Multi-Label NILM Classification
por: Muhammad Asif Ali Rehmani, et al.
Publicado: (2021) -
Klasifikasi Komentar Bullying pada Instagram Menggunakan Metode K-Nearest Neighbor
por: Reski Mai Candra, et al.
Publicado: (2020)