A Highly Accurate NILM: With an Electro-Spectral Space That Best Fits Algorithm’s National Deployment Requirements
The central problems of some of the existing Non-Intrusive Load Monitoring (NILM) algorithms are indicated as: (1) higher required electrical device identification accuracy; (2) the fact that they enable training over a larger device count; and (3) their ability to be trained faster, limiting them f...
Enregistré dans:
Auteurs principaux: | Netzah Calamaro, Moshe Donko, Doron Shmilovitz |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/498634edcd114e9c8e0574c058a5dcb0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques
par: Mohamed Sraitih, et autres
Publié: (2021) -
The experience of applying mathematical methods for analysis of the microgeneration sector in Russia
par: Vladimirovich Gavriusev Sergei, et autres
Publié: (2021) -
KNN-SC: Novel Spectral Clustering Algorithm Using k-Nearest Neighbors
par: Jeong-Hun Kim, et autres
Publié: (2021) -
Power Profile and Thresholding Assisted Multi-Label NILM Classification
par: Muhammad Asif Ali Rehmani, et autres
Publié: (2021) -
Klasifikasi Komentar Bullying pada Instagram Menggunakan Metode K-Nearest Neighbor
par: Reski Mai Candra, et autres
Publié: (2020)